Matching Items (41)
Filtering by

Clear all filters

131533-Thumbnail Image.png
Description
Many factors are at play within the genome of an organism, contributing to much of the diversity and variation across the tree of life. While the genome is generally encoded by four nucleotides, A, C, T, and G, this code can be expanded. One particular mechanism that we examine in

Many factors are at play within the genome of an organism, contributing to much of the diversity and variation across the tree of life. While the genome is generally encoded by four nucleotides, A, C, T, and G, this code can be expanded. One particular mechanism that we examine in this thesis is modification of bases—more specifically, methylation of Adenine (m6A) within the GATC motif of Escherichia coli. These methylated adenines are especially important in a process called methyl-directed mismatch repair (MMR), a pathway responsible for repairing errors in the DNA sequence produced by replication. In this pathway, methylated adenines identify the parent strand and direct the repair proteins to correct the erroneous base in the daughter strand. While the primary role of methylated adenines at GATC sites is to direct the MMR pathway, this methylation has also been found to affect other processes, such as gene expression, the activity of transposable elements, and the timing of DNA replication. However, in the absence of MMR, the ability of these other processes to maintain adenine methylation and its targets is unknown.
To determine if the disruption of the MMR pathway results in the reduced conservation of methylated adenines as well as an increased tolerance for mutations that result in the loss or gain of new GATC sites, we surveyed individual clones isolated from experimentally evolving wild-type and MMR-deficient (mutL- ;conferring an 150x increase in mutation rate) populations of E. coli with whole-genome sequencing. Initial analysis revealed a lack of mutations affecting methylation sites (GATC tetranucleotides) in wild-type clones. However, the inherent low mutation rates conferred by the wild-type background render this result inconclusive, due to a lack of statistical power, and reveal a need for a more direct measure of changes in methylation status. Thus as a first step to comparative methylomics, we benchmarked four different methylation-calling pipelines on three biological replicates of the wildtype progenitor strain for our evolved populations.
While it is understood that these methylated sites play a role in the MMR pathway, it is not fully understood the full extent of their effect on the genome. Thus the goal of this thesis was to better understand the forces which maintain the genome, specifically concerning m6A within the GATC motif.
ContributorsBoyer, Gwyneth (Author) / Lynch, Michael (Thesis director) / Behringer, Megan (Committee member) / Geiler-Samerotte, Kerry (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
135440-Thumbnail Image.png
Description
Many bacteria actively import environmental DNA and incorporate it into their genomes. This behavior, referred to as transformation, has been described in many species from diverse taxonomic backgrounds. Transformation is expected to carry some selective advantages similar to those postulated for meiotic sex in eukaryotes. However, the accumulation of loss-of-function

Many bacteria actively import environmental DNA and incorporate it into their genomes. This behavior, referred to as transformation, has been described in many species from diverse taxonomic backgrounds. Transformation is expected to carry some selective advantages similar to those postulated for meiotic sex in eukaryotes. However, the accumulation of loss-of-function alleles at transformation loci and an increased mutational load from recombining with DNA from dead cells create additional costs to transformation. These costs have been shown to outweigh many of the benefits of recombination under a variety of likely parameters. We investigate an additional proposed benefit of sexual recombination, the Red Queen hypothesis, as it relates to bacterial transformation. Here we describe a computational model showing that host-pathogen coevolution may provide a large selective benefit to transformation and allow transforming cells to invade an environment dominated by otherwise equal non-transformers. Furthermore, we observe that host-pathogen dynamics cause the selection pressure on transformation to vary extensively in time, explaining the tight regulation and wide variety of rates observed in naturally competent bacteria. Host-pathogen dynamics may explain the evolution and maintenance of natural competence despite its associated costs.
ContributorsPalmer, Nathan David (Author) / Cartwright, Reed (Thesis director) / Wang, Xuan (Committee member) / Sievert, Chris (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136588-Thumbnail Image.png
Description
Healthcare systems and health insurance are both concepts implemented in every country to provide access to the general population. Countries undergo healthcare reforms in order to increase the performance of the system. In 2010, the Affordable Care Act (ACA) was introduced in the United States to increase coverage and create

Healthcare systems and health insurance are both concepts implemented in every country to provide access to the general population. Countries undergo healthcare reforms in order to increase the performance of the system. In 2010, the Affordable Care Act (ACA) was introduced in the United States to increase coverage and create a more inclusive health insurance market. For comparison, the recent reforms in Chile and Singapore were observed as points to determine what concepts work well and what can be implemented in the U.S. system. Unlike the United States, Chile and Singapore completely altered the system that was previously in use. In Chile, the reforms began in the 1970s and made two more major changes in 1973 and early 2000s. Singapore began its reform in the 1960s and created the medical savings account system that is still in use today. To analyze the system further, the medical professions of neurology, physician assistants and optometry were compared in each country. In regards to neurology, the coverage of services in Chile and Singapore are similar in that select medical procedures are covered. In contrast, the United States offers coverage on a case-by-case basis. For physician assistants, such a profession does not exist in Chile or Singapore. In the United States, the profession is rapidly expanding, and coverage is offered for most services provided. Optometry is a stand-alone profession in both the U.S. and Singapore. The services provided by the optometrists are selectively covered by insurance, depending on whether it is considered a medical problem. Chile covers the services often provided by optometrists, however, the ophthalmologist is the provider, as optometry does not exist. This study concluded that the U.S. should continue to provide a more inclusive healthcare system that includes vision and dental care. The U.S., like Singapore, should also adopt a more integrative system. Under this system, patient care would be provided in a way that professionals specializing in the care are included in every step of the process.
ContributorsLa, Jenny (Co-author) / Feruj, Farihah (Co-author) / Morrison, Sarah (Co-author) / Gaughan, Monica (Thesis director) / Essary, Alison (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136395-Thumbnail Image.png
Description
We examined the evolutionary morphological responses of Drosophila melanogaster that had evolved at constant cold (16°), constant hot (25°C), and fluctuating (16° and 25°C). Flies that were exposed to the constant low mean temperature developed larger thorax, wing, and cell sizes than those exposed to constant high mean temperatures. Males

We examined the evolutionary morphological responses of Drosophila melanogaster that had evolved at constant cold (16°), constant hot (25°C), and fluctuating (16° and 25°C). Flies that were exposed to the constant low mean temperature developed larger thorax, wing, and cell sizes than those exposed to constant high mean temperatures. Males and females both responded similarly to thermal treatments in average wing and cell size. The resulting cell area for a given wing size in thermal fluctuating populations remains unclear and remains a subject for future research.
ContributorsAdrian, Gregory John (Author) / Angilletta, Michael (Thesis director) / Harrison, Jon (Committee member) / Rusch, Travis (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
133795-Thumbnail Image.png
Description
Since its discovery in 1524, many people have characterized the vermiform appendix. Charles Darwin considered the human appendix to be a vestige and a useless structure. Others at the time opposed this hypothesis. However, Darwin's hypothesis became prevalent one until recently when there became a renewed interest in the appendix

Since its discovery in 1524, many people have characterized the vermiform appendix. Charles Darwin considered the human appendix to be a vestige and a useless structure. Others at the time opposed this hypothesis. However, Darwin's hypothesis became prevalent one until recently when there became a renewed interest in the appendix because of advancements in microscopes, knowledge of the immune system, and phylogenetics. In this review, I will argue that the vermiform appendix, although still not completely understood, has important functions. First, I will give the anatomy of the appendix. I will discuss the comparative anatomy between different animals and also primates. I will address the effects of appendicitis and appendectomy. I will give background on vestigial structures and will discuss if the appendix is a vestige. Following, I will review the evolution of the appendix. Finally, I will argue that the function of the appendix is as an immune organ, including discussion of gut-associated lymphoid tissue (GALT), development of lymphoid follicles in GALT and their comparison within different organs, Immunoglobulin A (IgA) function in the gut, biofilms as evidence that the appendix is a safe-house for beneficial bacteria, re-inoculation of the bowel, and protection against recurring infection. I will conclude with future studies that should be conducted to further our understanding of the vermiform appendix.
ContributorsPrestwich, Shelby Elizabeth (Author) / Cartwright, Reed (Thesis director) / Lynch, John (Committee member) / Furstenau, Tara (Committee member) / School of Geographical Sciences and Urban Planning (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137220-Thumbnail Image.png
Description
In 2007, the Center for Biological Diversity (CBD) petitioned the United States Fish and Wildlife Service (USFWS) and the California Department of Fish and Wildlife (CDFW) to list the American pika (Ochotona princeps) as an endangered species. After several petition denials, the petition was evaluated during both 90-day, and 12-month

In 2007, the Center for Biological Diversity (CBD) petitioned the United States Fish and Wildlife Service (USFWS) and the California Department of Fish and Wildlife (CDFW) to list the American pika (Ochotona princeps) as an endangered species. After several petition denials, the petition was evaluated during both 90-day, and 12-month reviews. Ultimately, both petitions were denied and the pika was not given protection under the Endangered Species Act (ESA). During the petitioning years, 2007 through 2013, there were many newspaper publications, press releases, and blog entries supporting the listing of the pika. Information published by these media ranged from misleading, to scientifically inaccurate. The public was swayed by these publications, and showed their support for listing the pika during the public comment period throughout the 12-month status review in California. While the majority of the public comments were in favor of listing the pika, there were a few letters that criticized the CBD for making a poster child out of a "cute" species. During the 12-month status review, the CDFW contacted pika experts and evaluated scientific literature to gain an understanding of the American pika's status. Seven years after the original petition, the CDFW denied listing the pika on the grounds that the species is not expected to become extinct in the next few decades. This case serves as an example where a prominent organization, the CBD, petitions to list a species that does not warrant protection. Their goal of making the pika the face of climate change failed when species was examined.
ContributorsBasso, Samantha Joy (Author) / Smith, Andrew (Thesis director) / Minteer, Ben (Committee member) / Angilletta, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137009-Thumbnail Image.png
Description
The Cannabis plant has historical roots with human beings. The plant produces compounds called cannabinoids, which are responsible for the physiological affects of Cannabis and make it a research candidate for medicinal use. Analysis of the plant and its components will help build a better database that could be used

The Cannabis plant has historical roots with human beings. The plant produces compounds called cannabinoids, which are responsible for the physiological affects of Cannabis and make it a research candidate for medicinal use. Analysis of the plant and its components will help build a better database that could be used to develop a complete roster of medicinal benefits. Research regarding the cellular protein receptors that bind the cannabinoids may not only help provide reasons explaining why the Cannabis plant could be medicinally relevant, but will also help explain how the receptors originated. The receptors may have been present in organisms before the present day Cannabis plant. So why would there be receptors that bind to cannabinoids? Searching for an endocannabinoid system could help explain the purpose of the cannabinoid receptors and their current structures in humans. Using genetic technologies we are able to take a closer look into the evolutionary history of cannabinoids and the receptors that bind them.
ContributorsSalasnek, Reed Samuel (Author) / Capco, David (Thesis director) / Mangone, Marco (Committee member) / Stump, Edmund (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
136967-Thumbnail Image.png
Description
The evolution of blindness in cave animals has been heavily studied; however, little research has been done on the interaction of migration and drift on the development of blindness in these populations. In this study, a model is used to compare the effect that genetic drift has on the fixation

The evolution of blindness in cave animals has been heavily studied; however, little research has been done on the interaction of migration and drift on the development of blindness in these populations. In this study, a model is used to compare the effect that genetic drift has on the fixation of a blindness allele for varying amounts of migration and selection. For populations where the initial frequency is quite low, genetic drift plays a much larger role in the fixation of blindness than populations where the initial frequency is high. In populations where the initial frequency is high, genetic drift plays almost no role in fixation. Our results suggest that migration plays a greater role in the fate of the blindness allele than selection.
ContributorsMerry, Alexandra Leigh (Author) / Cartwright, Reed (Thesis director) / Rosenberg, Michael (Committee member) / Schwartz, Rachel (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
134550-Thumbnail Image.png
Description
A comprehensive review of the managed retreat literature reveals mixed feelings towards the legality, practicality and cost of the policy action as a way to react to rising sea level and coastal erosion. Existing research shows increasing costs of severe storm damage borne to insurance companies and private citizens, furthering

A comprehensive review of the managed retreat literature reveals mixed feelings towards the legality, practicality and cost of the policy action as a way to react to rising sea level and coastal erosion. Existing research shows increasing costs of severe storm damage borne to insurance companies and private citizens, furthering the need for long-term policy actions that mitigate the negative effects of major storms. Some main policy actions are restricting development, strategically abandoning infrastructure, funding buyout programs, utilizing rolling easements, and implementing a variety of protective structures. These policy actions face various problems regarding their feasibility and practicality as policy tools, including wavering public support and total costs associated with the actions. Managed retreat specifically faces public scrutiny, as many coastal property owners are reluctant to retreat from the shore. This paper will use examples of managed retreat in other countries (Netherlands, Belgium, and France) to develop plans for specific municipalities, using their models, costs and successes to generate in-depth policy plans and proposals. When observing Clatsop County, Oregon and assessing its policy options, its established that the best policy option is a combination of beach nourishment and Controlled Reduced Tides. This paper analyzes several features of the county, such as the importance of its coastal economic activity and its geographical makeup, to decide what policy actions would be best to mitigate its risk from sea level rise and flood damages. The process used to determine the best course of action for Clatsop County can be replicated in other municipalities, although the resulting policies will obviously be unique to the area.
ContributorsBarry, Matthew John (Author) / Wells, David (Thesis director) / Bennett, Ira (Committee member) / School of Public Affairs (Contributor) / Department of Economics (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
132980-Thumbnail Image.png
Description
Lactase persistence is the ability of adults to digest lactose in milk (Segurel & Bon, 2017). Mammals are generally distinguished by their mammary glands which gives females the ability to produce milk and feed their newborn children. The new born therefore requires the ability to breakdown the lactose in the

Lactase persistence is the ability of adults to digest lactose in milk (Segurel & Bon, 2017). Mammals are generally distinguished by their mammary glands which gives females the ability to produce milk and feed their newborn children. The new born therefore requires the ability to breakdown the lactose in the milk to ensure its proper digestion (Segurel & Bon, 2017). Generally, humans lose the expression of lactase after weaning, which prevents them being able to breakdown lactose from dairy (Flatz, 1987).
My research is focused on the people of Turkana, a human pastoral population inhabiting Northwest Kenya. The people of Turkana are Nilotic people that are native to the Turkana district. There are currently no conclusive studies done on evidence for genetic lactase persistence in Turkana. Therefore, my research will be on the evolution of lactase persistence in the people of Turkana. The goal of this project is to investigate the evolutionary history of two genes with known involvement in lactase persistence, LCT and MCM6, in the Turkana. Variants in these genes have previously been identified to result in the ability to digest lactose post-weaning age. Furthermore, an additional study found that a closely related population to the Turkana, the Massai, showed stronger signals of recent selection for lactase persistence than Europeans in these genes. My goal is to characterize known variants associated with lactase persistence by calculating their allele frequencies in the Turkana and conduct selection scans to determine if LCT/MCM6 show signatures of positive selection. In doing this, we conducted a pilot study consisting of 10 female Turkana individuals and 10 females from four different populations from the 1000 genomes project namely: the Yoruba in Ibadan, Nigeria (YRI); Luhya in Webuye, Kenya; Utah Residents with Northern and Western European Ancestry (CEU); and the Southern Han Chinese. The allele frequency calculation suggested that the CEU (Utah Residents with Northern and Western European Ancestry) population had a higher lactase persistence associated allele frequency than all the other populations analyzed here, including the Turkana population. Our Tajima’s D calculations and analysis suggested that both the Turkana population and the four haplotype map populations shows signatures of positive selection in the same region. The iHS selection scans we conducted to detect signatures of positive selection on all five populations showed that the Southern Han Chinese (CHS), the LWK (Luhya in Webuye, Kenya) and the YRI (Yoruba in Ibadan, Nigeria) populations had stronger signatures of positive selection than the Turkana population. The LWK (Luhya in Webuye, Kenya) and the YRI (Yoruba in Ibadan, Nigeria) populations showed the strongest signatures of positive selection in this region. This project serves as a first step in the investigation of lactase persistence in the Turkana population and its evolution over time.
ContributorsJobe, Ndey Bassin (Author) / Wilson Sayres, Melissa (Thesis director) / Paaijmans, Krijn (Committee member) / Taravella, Angela (Committee member) / School of Earth and Space Exploration (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05