Matching Items (3)
Filtering by

Clear all filters

137539-Thumbnail Image.png
Description
The phytoplankton communities in the open oceans are dominated by picophytoplankton (0.7-2µm) and nanophytoplankton (3-5µm). Studying the community dynamics of these phytoplankton is important to learn about their role in the carbon cycle and food web of the oceans. Dilution experiments were used, along with microscopy and molecular

The phytoplankton communities in the open oceans are dominated by picophytoplankton (0.7-2µm) and nanophytoplankton (3-5µm). Studying the community dynamics of these phytoplankton is important to learn about their role in the carbon cycle and food web of the oceans. Dilution experiments were used, along with microscopy and molecular techniques, to determine abundance, biomass and phytoplankton growth and grazing rates in the oligotrophic Sargasso Sea (western North Atlantic subtropical gyre) around the Bermuda Atlantic Time Series Station (BATS) in the summer of 2012. With low biomass and chlorophyll a, the Sargasso Sea appears to be unproductive at first glance, but I found that pico- and nanophytoplankton have high instantaneous growth rates that are balanced by the high grazing rates of microzooplankton.
Mesoscale eddies are important features in the Sargasso Sea that can increase or decrease the available nutrients in the euphotic zone. Two different mesoscale eddies were sampled: an anti-cyclonic eddy and the BATS station which was located at the edge of a cyclonic eddy. The results indicated that BATS had overall higher instantaneous growth (µ between 0.1 d-1 and 3.7 d-1) and grazing rates on pico- and nanophytoplankton, as well as diatoms, compared to the anti-cyclonic eddy (µ between 0.2 d-1 and 3 d-1). I also determined taxon-specific rates using quantitative polymerase chain reaction (qPCR) for the order Mamiellales, one of the smallest representatives of the abundant prasinophytes. This method yielded surprisingly high growth (9.7 d-1 ) and grazing rates (-8.2 d-1) at 80m for BATS. The euphotic zone (~100m) integrated biomass of all phytoplankton did not vary significantly between BATS (379 mg C m-2) and the anti-cyclonic eddy (408 mg C m-2) and the net growth rates at both locations were very close to zero for most of the groups. Although the biomass and net growth rates did not vary greatly between the two locations, the high instantaneous growth and grazing rates of pico- and nano-eukaryotic phytoplankton indicate an increase in the rate of the marine microbial food web, or microbial loop, compared to the anti-cyclonic eddy. This could have been due to the input of new nutrients in the edge of the cyclonic eddy at BATS. Thus, my study suggests that mesoscale variability is of considerable importance for the dynamics of the phytoplankton community and their role in the microbial loop. Much can be learned when using DNA based taxon-specific rates, especially to understand the relative importance and contribution of specific taxa.
More taxon-specific molecular studies will have to be carried out to quantify specific rates of more phytoplankton groups, which will supply a more complete knowledge of phytoplankton community dynamics in the Sargasso Sea. This will increase our understanding of the role of specific groups to the biological carbon dynamics in the euphotic zone into the deep ocean.
ContributorsHamill, Demetra Scott (Author) / Neuer, Susanne (Thesis director) / Elser, Jim (Committee member) / De Martini, Francesca (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
149451-Thumbnail Image.png
Description
Phytoplankton comprise the base of the marine food web, and, along with heterotrophic protists, they are key players in the biological pump that transports carbon from the surface to the deep ocean. In the world's subtropical oligotrophic gyres, plankton communities exhibit strong seasonality. Winter storms vent deep water into the

Phytoplankton comprise the base of the marine food web, and, along with heterotrophic protists, they are key players in the biological pump that transports carbon from the surface to the deep ocean. In the world's subtropical oligotrophic gyres, plankton communities exhibit strong seasonality. Winter storms vent deep water into the euphotic zone, triggering a surge in primary productivity in the form of a spring phytoplankton bloom. Although the hydrographic trends of this "boom and bust" cycle have been well studied for decades, community composition and its seasonal and annual variability remains an integral subject of research. It is hypothesized here that proportions of different phytoplankton and protistan taxa vary dramatically between seasons and years, and that picoplankton represent an important component of this community and contributor to carbon in the surface ocean. Monthly samples from the Bermuda Atlantic Time-series Study (BATS) site were analyzed by epifluorescence microscopy, which permits classification by morphology, size, and trophic type. Epifluorescence counts were supplemented with flow cytometric quantification of Synechococcus, Prochlorococcus, and autotrophic pico- and nanoeukaryotes. Results from this study indicate Synechococcus and Prochlorococcus, prymnesiophytes, and hetero- and mixotrophic nano- and dinoflagellates were the major players in the BATS region plankton community. Ciliates, cryptophytes, diatoms, unidentified phototrophs, and other taxa represented rarer groups. Both flow cytometry and epifluorescence microscopy revealed Synechococcus to be most prevalent during the spring bloom. Prymnesiophytes likewise displayed distinct seasonality, with the highest concentrations again being noted during the bloom. Heterotrophic nano- and dinoflagellates, however, were most common in fall and winter. Mixotrophic dinoflagellates, while less abundant than their heterotrophic counterparts, displayed similar seasonality. A key finding of this study was the interannual variability revealed between the two years. While most taxa were more abundant in the first year, prymnesiophytes experienced much greater abundance in the second year bloom. Analyses of integrated carbon revealed further stark contrasts between the two years, both in terms of total carbon and the contributions of different groups. Total integrated carbon varied widely in the first study year but displayed less fluctuation after June 2009, and values were noticeably reduced in the second year.
ContributorsHansen, Amy (Author) / Neuer, Susanne (Thesis advisor) / Krajmalnik-Brown, Rosa (Committee member) / Sommerfeld, Milton (Committee member) / Arizona State University (Publisher)
Created2010
Description

The Northern Gulf of California is characterized by an extreme tidal range and temperature fluctuations between seasons, as well as a large variation in microhabitats along its shoreline. As a result, the intertidal regions exhibit a diverse and distinct collection of species that have adapted to these environmental conditions, with

The Northern Gulf of California is characterized by an extreme tidal range and temperature fluctuations between seasons, as well as a large variation in microhabitats along its shoreline. As a result, the intertidal regions exhibit a diverse and distinct collection of species that have adapted to these environmental conditions, with roughly 4.6 percent being endemic. Minimal knowledge of these ecosystems existed until the 1940’s, when the renowned author John Steinbeck accompanied marine biologist Edward Ricketts on an expedition with the purpose of documenting the biodiversity of the Sea of Cortez. Today, the majority of research in the Northern Gulf of California is directed by CEDO, the Intercultural Center for the Study of Deserts and Oceans. The purpose of this project is to compile a literature review of research on the intertidal areas of the Northern Gulf and produce an illustrated brochure that educates beach visitors on local biodiversity as a collaboration with CEDO and the Clean Beaches Committee of Puerto Peñasco. This brochure aims to increase respect and appreciation for these species, as increased tourism over the past few decades has led to detrimental effects on the ecosystem. Additionally, it serves to promote the success of the Blue Flag certification of El Mirador beach in front of Manny’s Beach Club.

ContributorsPotter, Jessica Noel (Co-author) / Potter, Jessica (Co-author) / Neuer, Susanne (Thesis director) / Mangin, Katrina (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05