Matching Items (3)
Filtering by

Clear all filters

156994-Thumbnail Image.png
Description
This dissertation critically evaluated methodologies and devices for assessing and protecting the health of human populations, with particular emphasis on groundwater remediation and the use of wastewater-based epidemiology (WBE) to inform population health. A meta-analysis and assessment of laboratory-scale treatability studies for removing chlorinated solvents from groundwater found that sediment

This dissertation critically evaluated methodologies and devices for assessing and protecting the health of human populations, with particular emphasis on groundwater remediation and the use of wastewater-based epidemiology (WBE) to inform population health. A meta-analysis and assessment of laboratory-scale treatability studies for removing chlorinated solvents from groundwater found that sediment microcosms operated as continuous-flow columns are preferable to batch bottles when seeking to emulate with high fidelity the complex conditions prevailing in the subsurface in contaminated aquifers (Chapter 2). Compared to monitoring at the field-scale, use of column microcosms also showed (i) improved chemical speciation, and (ii) qualitative predictability of field parameters (Chapter 3). Monitoring of glucocorticoid hormones in wastewater of a university campus showed (i) elevated stress levels particularly at the start of the semester, (ii) on weekdays relative to weekend days (p = 0.05) (161 ± 42 μg d-1 per person, 122 ± 54 μg d-1 per person; p ≤ 0.05), and (iii) a positive association between levels of stress hormones and nicotine (rs: 0.49) and caffeine (0.63) consumption in this student population (Chapter 4). Also, (i) alcohol consumption determined by WBE was in line with literature estimates for this young sub-population (11.3 ± 7.5 g d-1 per person vs. 10.1 ± 0.8 g d-1 per person), whereas caffeine and nicotine uses were below (114 ± 49 g d-1 per person, 178 ± 19 g d-1 per person; 627 ± 219 g d-1 per person, 927 ± 243 g d-1 per person). The introduction of a novel continuous in situ sampler to WBE brought noted benefits relative to traditional time-integrated sampling, including (i) a higher sample coverage (93% vs. 3%), (ii) an ability to captured short-term analyte pulses (e.g., heroin, fentanyl, norbuprenorphine, and methadone), and (iii) an overall higher mass capture for drugs of abuse like morphine, fentanyl, methamphetamine, amphetamine, and the opioid antagonist metabolite norbuprenorphine (p ≤ 0.01). Methods and devices developed in this work are poised to find applications in the remediation sector and in human health assessments.
ContributorsDriver, Erin Michelle (Author) / Halden, Rolf (Thesis advisor) / Conroy-Ben, Otakuye (Committee member) / Kavazanjian, Edward (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2018
127819-Thumbnail Image.png
Description

The Future of Wastewater Sensing workshop is part of a collaboration between Arizona State University Center for Nanotechnology in Society in the School for the Future of Innovation in Society, the Biodesign Institute’s Center for Environmental Security, LC Nano, and the Nano-enabled Water Treatment (NEWT) Systems NSF Engineering Research Center.

The Future of Wastewater Sensing workshop is part of a collaboration between Arizona State University Center for Nanotechnology in Society in the School for the Future of Innovation in Society, the Biodesign Institute’s Center for Environmental Security, LC Nano, and the Nano-enabled Water Treatment (NEWT) Systems NSF Engineering Research Center. The Future of Wastewater Sensing workshop explores how technologies for studying, monitoring, and mining wastewater and sewage sludge might develop in the future, and what consequences may ensue for public health, law enforcement, private industry, regulations and society at large. The workshop pays particular attention to how wastewater sensing (and accompanying research, technologies, and applications) can be innovated, regulated, and used to maximize societal benefit and minimize the risk of adverse outcomes, when addressing critical social and environmental challenges.

ContributorsWithycombe Keeler, Lauren (Researcher) / Halden, Rolf (Researcher) / Selin, Cynthia (Researcher) / Center for Nanotechnology in Society (Contributor)
Created2015-11-01
Description

Synthetic plastics are ubiquitously used in a broad range of applications, including food and drink packaging. Plastics often contain chemical additives, including bisphenols, phthalates, and terephthalic acid, which can degrade under thermal stress. The environmental presence of these chemicals is cause for public concern, especially in consumer products that utilize

Synthetic plastics are ubiquitously used in a broad range of applications, including food and drink packaging. Plastics often contain chemical additives, including bisphenols, phthalates, and terephthalic acid, which can degrade under thermal stress. The environmental presence of these chemicals is cause for public concern, especially in consumer products that utilize plastic packaging, as many have been identified as endocrine disruptors. This study sought to determine exposure to phthalates, bisphenols, and terephthalic acid by quantifying a broad spectrum of these analytes within three bottled water brands at varying temperature exposure levels using the combination of solid phase extraction followed by isotope dilution liquid chromatography-tandem mass spectrometry. Monobenzyl phthalate was detected in two of the three brands after bottles were heated to ~100 °C, ranging from 98 – 107 ng/L, and bisphenol A was detected in one brand at ~100 °C at an average concentration of 748 ± 36 ng/L. Subsequent mass loading calculations demonstrated that bioaccumulation of BPA from Brand C after high levels of temperature exposure well exceeded the tolerable daily intake (TDI). Findings in this study indicate that consumers should not be expected to incur harmful exposures to the target compounds under normal conditions as analytes were not measured in water bottle samples at 25 °C or 60 °C. Further studies should explore a more nuisance approach to heating over long durations, including that of ultraviolet exposure.

ContributorsZevitz, Jacob (Author) / Halden, Rolf (Thesis director) / Driver, Erin (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2022-12