Matching Items (1)
Filtering by

Clear all filters

132998-Thumbnail Image.png
Description
The research analyzes the transformation of wasted thermal energy into a usable form through thermogalvanic devices. This technology helps mitigate international growing energy demands. Building energy efficiency is a critical research topic, since the loads account for 40% of all energy demand in developed nations, and 30% in less developed

The research analyzes the transformation of wasted thermal energy into a usable form through thermogalvanic devices. This technology helps mitigate international growing energy demands. Building energy efficiency is a critical research topic, since the loads account for 40% of all energy demand in developed nations, and 30% in less developed nations. A significant portion of the energy consumed for heating and cooling, where a majority is dissipated to the ambient as waste heat. This research answers how much power output (µW·cm-2) can the thermogalvanic brick experimentally produce from an induced temperature gradient? While there are multiple avenues for the initial and optimized prototype design, one key area of interest relating to thermogalvanic devices is the effective surface area of the electrodes. This report highlights the experimental power output measurements of a Cu/Cu2+ thermogalvanic brick by manipulating the effective surface area of the electrodes. Across three meshes, the maximum power output normalized for temperature was found to be between 2.13-2.87 x 10-3 μWcm-2K-2. The highest normalized power output corresponded to the mesh with the highest effective surface area, which was classified as the fine mesh. This intuitively aligned with the theoretical understanding of surface area and maximum power output, where decreasing the activation resistance also reduces the internal resistance, which increases the theoretical maximum power.
ContributorsKiracofe, Ryan Moore (Author) / Phelan, Patrick (Thesis director) / El Asmar, Mounir (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05