Matching Items (2)
Filtering by

Clear all filters

155971-Thumbnail Image.png
Description
Our ability to understand networks is important to many applications, from the analysis and modeling of biological networks to analyzing social networks. Unveiling network dynamics allows us to make predictions and decisions. Moreover, network dynamics models have inspired new ideas for computational methods involving multi-agent cooperation, offering effective solutions for

Our ability to understand networks is important to many applications, from the analysis and modeling of biological networks to analyzing social networks. Unveiling network dynamics allows us to make predictions and decisions. Moreover, network dynamics models have inspired new ideas for computational methods involving multi-agent cooperation, offering effective solutions for optimization tasks. This dissertation presents new theoretical results on network inference and multi-agent optimization, split into two parts -

The first part deals with modeling and identification of network dynamics. I study two types of network dynamics arising from social and gene networks. Based on the network dynamics, the proposed network identification method works like a `network RADAR', meaning that interaction strengths between agents are inferred by injecting `signal' into the network and observing the resultant reverberation. In social networks, this is accomplished by stubborn agents whose opinions do not change throughout a discussion. In gene networks, genes are suppressed to create desired perturbations. The steady-states under these perturbations are characterized. In contrast to the common assumption of full rank input, I take a laxer assumption where low-rank input is used, to better model the empirical network data. Importantly, a network is proven to be identifiable from low rank data of rank that grows proportional to the network's sparsity. The proposed method is applied to synthetic and empirical data, and is shown to offer superior performance compared to prior work. The second part is concerned with algorithms on networks. I develop three consensus-based algorithms for multi-agent optimization. The first method is a decentralized Frank-Wolfe (DeFW) algorithm. The main advantage of DeFW lies on its projection-free nature, where we can replace the costly projection step in traditional algorithms by a low-cost linear optimization step. I prove the convergence rates of DeFW for convex and non-convex problems. I also develop two consensus-based alternating optimization algorithms --- one for least square problems and one for non-convex problems. These algorithms exploit the problem structure for faster convergence and their efficacy is demonstrated by numerical simulations.

I conclude this dissertation by describing future research directions.
ContributorsWai, Hoi To (Author) / Scaglione, Anna (Thesis advisor) / Berisha, Visar (Committee member) / Nedich, Angelia (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2017
156246-Thumbnail Image.png
Description
Diffusion processes in networks can be used to model many real-world processes, such as the propagation of a rumor on social networks and cascading failures on power networks. Analysis of diffusion processes in networks can help us answer important questions such as the role and the importance of each node

Diffusion processes in networks can be used to model many real-world processes, such as the propagation of a rumor on social networks and cascading failures on power networks. Analysis of diffusion processes in networks can help us answer important questions such as the role and the importance of each node in the network for spreading the diffusion and how to top or contain a cascading failure in the network. This dissertation consists of three parts.

In the first part, we study the problem of locating multiple diffusion sources in networks under the Susceptible-Infected-Recovered (SIR) model. Given a complete snapshot of the network, we developed a sample-path-based algorithm, named clustering and localization, and proved that for regular trees, the estimators produced by the proposed algorithm are within a constant distance from the real sources with a high probability. Then, we considered the case in which only a partial snapshot is observed and proposed a new algorithm, named Optimal-Jordan-Cover (OJC). The algorithm first extracts a subgraph using a candidate selection algorithm that selects source candidates based on the number of observed infected nodes in their neighborhoods. Then, in the extracted subgraph, OJC finds a set of nodes that "cover" all observed infected nodes with the minimum radius. The set of nodes is called the Jordan cover, and is regarded as the set of diffusion sources. We proved that OJC can locate all sources with probability one asymptotically with partial observations in the Erdos-Renyi (ER) random graph. Multiple experiments on different networks were done, which show our algorithms outperform others.

In the second part, we tackle the problem of reconstructing the diffusion history from partial observations. We formulated the diffusion history reconstruction problem as a maximum a posteriori (MAP) problem and proved the problem is NP hard. Then we proposed a step-by- step reconstruction algorithm, which can always produce a diffusion history that is consistent with the partial observations. Our experimental results based on synthetic and real networks show that the algorithm significantly outperforms some existing methods.

In the third part, we consider the problem of improving the robustness of an interdependent network by rewiring a small number of links during a cascading attack. We formulated the problem as a Markov decision process (MDP) problem. While the problem is NP-hard, we developed an effective and efficient algorithm, RealWire, to robustify the network and to mitigate the damage during the attack. Extensive experimental results show that our algorithm outperforms other algorithms on most of the robustness metrics.
ContributorsChen, Zhen (Author) / Ying, Lei (Thesis advisor) / Tong, Hanghang (Thesis advisor) / Zhang, Junshan (Committee member) / He, Jingrui (Committee member) / Arizona State University (Publisher)
Created2018