Matching Items (10)
Filtering by

Clear all filters

151605-Thumbnail Image.png
Description
In most social networking websites, users are allowed to perform interactive activities. One of the fundamental features that these sites provide is to connecting with users of their kind. On one hand, this activity makes online connections visible and tangible; on the other hand, it enables the exploration of our

In most social networking websites, users are allowed to perform interactive activities. One of the fundamental features that these sites provide is to connecting with users of their kind. On one hand, this activity makes online connections visible and tangible; on the other hand, it enables the exploration of our connections and the expansion of our social networks easier. The aggregation of people who share common interests forms social groups, which are fundamental parts of our social lives. Social behavioral analysis at a group level is an active research area and attracts many interests from the industry. Challenges of my work mainly arise from the scale and complexity of user generated behavioral data. The multiple types of interactions, highly dynamic nature of social networking and the volatile user behavior suggest that these data are complex and big in general. Effective and efficient approaches are required to analyze and interpret such data. My work provide effective channels to help connect the like-minded and, furthermore, understand user behavior at a group level. The contributions of this dissertation are in threefold: (1) proposing novel representation of collective tagging knowledge via tag networks; (2) proposing the new information spreader identification problem in egocentric soical networks; (3) defining group profiling as a systematic approach to understanding social groups. In sum, the research proposes novel concepts and approaches for connecting the like-minded, enables the understanding of user groups, and exposes interesting research opportunities.
ContributorsWang, Xufei (Author) / Liu, Huan (Thesis advisor) / Kambhampati, Subbarao (Committee member) / Sundaram, Hari (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2013
152337-Thumbnail Image.png
Description
In contemporary society, sustainability and public well-being have been pressing challenges. Some of the important questions are:how can sustainable practices, such as reducing carbon emission, be encouraged? , How can a healthy lifestyle be maintained?Even though individuals are interested, they are unable to adopt these behaviors due to resource constraints.

In contemporary society, sustainability and public well-being have been pressing challenges. Some of the important questions are:how can sustainable practices, such as reducing carbon emission, be encouraged? , How can a healthy lifestyle be maintained?Even though individuals are interested, they are unable to adopt these behaviors due to resource constraints. Developing a framework to enable cooperative behavior adoption and to sustain it for a long period of time is a major challenge. As a part of developing this framework, I am focusing on methods to understand behavior diffusion over time. Facilitating behavior diffusion with resource constraints in a large population is qualitatively different from promoting cooperation in small groups. Previous work in social sciences has derived conditions for sustainable cooperative behavior in small homogeneous groups. However, how groups of individuals having resource constraint co-operate over extended periods of time is not well understood, and is the focus of my thesis. I develop models to analyze behavior diffusion over time through the lens of epidemic models with the condition that individuals have resource constraint. I introduce an epidemic model SVRS ( Susceptible-Volatile-Recovered-Susceptible) to accommodate multiple behavior adoption. I investigate the longitudinal effects of behavior diffusion by varying different properties of an individual such as resources,threshold and cost of behavior adoption. I also consider how behavior adoption of an individual varies with her knowledge of global adoption. I evaluate my models on several synthetic topologies like complete regular graph, preferential attachment and small-world and make some interesting observations. Periodic injection of early adopters can help in boosting the spread of behaviors and sustain it for a longer period of time. Also, behavior propagation for the classical epidemic model SIRS (Susceptible-Infected-Recovered-Susceptible) does not continue for an infinite period of time as per conventional wisdom. One interesting future direction is to investigate how behavior adoption is affected when number of individuals in a network changes. The affects on behavior adoption when availability of behavior changes with time can also be examined.
ContributorsDey, Anindita (Author) / Sundaram, Hari (Thesis advisor) / Turaga, Pavan (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2013
153339-Thumbnail Image.png
Description
A myriad of social media services are emerging in recent years that allow people to communicate and express themselves conveniently and easily. The pervasive use of social media generates massive data at an unprecedented rate. It becomes increasingly difficult for online users to find relevant information or, in other words,

A myriad of social media services are emerging in recent years that allow people to communicate and express themselves conveniently and easily. The pervasive use of social media generates massive data at an unprecedented rate. It becomes increasingly difficult for online users to find relevant information or, in other words, exacerbates the information overload problem. Meanwhile, users in social media can be both passive content consumers and active content producers, causing the quality of user-generated content can vary dramatically from excellence to abuse or spam, which results in a problem of information credibility. Trust, providing evidence about with whom users can trust to share information and from whom users can accept information without additional verification, plays a crucial role in helping online users collect relevant and reliable information. It has been proven to be an effective way to mitigate information overload and credibility problems and has attracted increasing attention.

As the conceptual counterpart of trust, distrust could be as important as trust and its value has been widely recognized by social sciences in the physical world. However, little attention is paid on distrust in social media. Social media differs from the physical world - (1) its data is passively observed, large-scale, incomplete, noisy and embedded with rich heterogeneous sources; and (2) distrust is generally unavailable in social media. These unique properties of social media present novel challenges for computing distrust in social media: (1) passively observed social media data does not provide necessary information social scientists use to understand distrust, how can I understand distrust in social media? (2) distrust is usually invisible in social media, how can I make invisible distrust visible by leveraging unique properties of social media data? and (3) little is known about distrust and its role in social media applications, how can distrust help make difference in social media applications?

The chief objective of this dissertation is to figure out solutions to these challenges via innovative research and novel methods. In particular, computational tasks are designed to {\it understand distrust}, a innovative task, i.e., {\it predicting distrust} is proposed with novel frameworks to make invisible distrust visible, and principled approaches are develop to {\it apply distrust} in social media applications. Since distrust is a special type of negative links, I demonstrate the generalization of properties and algorithms of distrust to negative links, i.e., {\it generalizing findings of distrust}, which greatly expands the boundaries of research of distrust and largely broadens its applications in social media.
ContributorsTang, Jiliang (Author) / Liu, Huan (Thesis advisor) / Xue, Guoliang (Committee member) / Ye, Jieping (Committee member) / Aggarwal, Charu (Committee member) / Arizona State University (Publisher)
Created2015
153140-Thumbnail Image.png
Description
The rapid urban expansion has greatly extended the physical boundary of our living area, along with a large number of POIs (points of interest) being developed. A POI is a specific location (e.g., hotel, restaurant, theater, mall) that a user may find useful or interesting. When exploring the city and

The rapid urban expansion has greatly extended the physical boundary of our living area, along with a large number of POIs (points of interest) being developed. A POI is a specific location (e.g., hotel, restaurant, theater, mall) that a user may find useful or interesting. When exploring the city and neighborhood, the increasing number of POIs could enrich people's daily life, providing them with more choices of life experience than before, while at the same time also brings the problem of "curse of choices", resulting in the difficulty for a user to make a satisfied decision on "where to go" in an efficient way. Personalized POI recommendation is a task proposed on purpose of helping users filter out uninteresting POIs and reduce time in decision making, which could also benefit virtual marketing.

Developing POI recommender systems requires observation of human mobility w.r.t. real-world POIs, which is infeasible with traditional mobile data. However, the recent development of location-based social networks (LBSNs) provides such observation. Typical location-based social networking sites allow users to "check in" at POIs with smartphones, leave tips and share that experience with their online friends. The increasing number of LBSN users has generated large amounts of LBSN data, providing an unprecedented opportunity to study human mobility for personalized POI recommendation in spatial, temporal, social, and content aspects.

Different from recommender systems in other categories, e.g., movie recommendation in NetFlix, friend recommendation in dating websites, item recommendation in online shopping sites, personalized POI recommendation on LBSNs has its unique challenges due to the stochastic property of human mobility and the mobile behavior indications provided by LBSN information layout. The strong correlations between geographical POI information and other LBSN information result in three major human mobile properties, i.e., geo-social correlations, geo-temporal patterns, and geo-content indications, which are neither observed in other recommender systems, nor exploited in current POI recommendation. In this dissertation, we investigate these properties on LBSNs, and propose personalized POI recommendation models accordingly. The performance evaluated on real-world LBSN datasets validates the power of these properties in capturing user mobility, and demonstrates the ability of our models for personalized POI recommendation.
ContributorsGao, Huiji (Author) / Liu, Huan (Thesis advisor) / Xue, Guoliang (Committee member) / Ye, Jieping (Committee member) / Caverlee, James (Committee member) / Arizona State University (Publisher)
Created2014
153269-Thumbnail Image.png
Description
Social media platforms such as Twitter, Facebook, and blogs have emerged as valuable

- in fact, the de facto - virtual town halls for people to discover, report, share and

communicate with others about various types of events. These events range from

widely-known events such as the U.S Presidential debate to smaller scale,

Social media platforms such as Twitter, Facebook, and blogs have emerged as valuable

- in fact, the de facto - virtual town halls for people to discover, report, share and

communicate with others about various types of events. These events range from

widely-known events such as the U.S Presidential debate to smaller scale, local events

such as a local Halloween block party. During these events, we often witness a large

amount of commentary contributed by crowds on social media. This burst of social

media responses surges with the "second-screen" behavior and greatly enriches the

user experience when interacting with the event and people's awareness of an event.

Monitoring and analyzing this rich and continuous flow of user-generated content can

yield unprecedentedly valuable information about the event, since these responses

usually offer far more rich and powerful views about the event that mainstream news

simply could not achieve. Despite these benefits, social media also tends to be noisy,

chaotic, and overwhelming, posing challenges to users in seeking and distilling high

quality content from that noise.

In this dissertation, I explore ways to leverage social media as a source of information and analyze events based on their social media responses collectively. I develop, implement and evaluate EventRadar, an event analysis toolbox which is able to identify, enrich, and characterize events using the massive amounts of social media responses. EventRadar contains three automated, scalable tools to handle three core event analysis tasks: Event Characterization, Event Recognition, and Event Enrichment. More specifically, I develop ET-LDA, a Bayesian model and SocSent, a matrix factorization framework for handling the Event Characterization task, i.e., modeling characterizing an event in terms of its topics and its audience's response behavior (via ET-LDA), and the sentiments regarding its topics (via SocSent). I also develop DeMa, an unsupervised event detection algorithm for handling the Event Recognition task, i.e., detecting trending events from a stream of noisy social media posts. Last, I develop CrowdX, a spatial crowdsourcing system for handling the Event Enrichment task, i.e., gathering additional first hand information (e.g., photos) from the field to enrich the given event's context.

Enabled by EventRadar, it is more feasible to uncover patterns that have not been

explored previously and re-validating existing social theories with new evidence. As a

result, I am able to gain deep insights into how people respond to the event that they

are engaged in. The results reveal several key insights into people's various responding

behavior over the event's timeline such the topical context of people's tweets does not

always correlate with the timeline of the event. In addition, I also explore the factors

that affect a person's engagement with real-world events on Twitter and find that

people engage in an event because they are interested in the topics pertaining to

that event; and while engaging, their engagement is largely affected by their friends'

behavior.
ContributorsHu, Yuheng (Author) / Kambhampati, Subbarao (Thesis advisor) / Horvitz, Eric (Committee member) / Krumm, John (Committee member) / Liu, Huan (Committee member) / Sundaram, Hari (Committee member) / Arizona State University (Publisher)
Created2014
150382-Thumbnail Image.png
Description
This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate

This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate between each two users. The whole trust checking process is divided into two steps: local checking and remote checking. Local checking directly contacts the email server to calculate the trust rate based on user's own email communication history. Remote checking is a distributed computing process to get help from user's social network friends and built the trust rate together. The email-based trust model is built upon a cloud computing framework called MobiCloud. Inside MobiCloud, each user occupies a virtual machine which can directly communicate with others. Based on this feature, the distributed trust model is implemented as a combination of local analysis and remote analysis in the cloud. Experiment results show that the trust evaluation model can give accurate trust rate even in a small scale social network which does not have lots of social connections. With this trust model, the security in both social network services and email communication could be improved.
ContributorsZhong, Yunji (Author) / Huang, Dijiang (Thesis advisor) / Dasgupta, Partha (Committee member) / Syrotiuk, Violet (Committee member) / Arizona State University (Publisher)
Created2011
149714-Thumbnail Image.png
Description
This thesis deals with the analysis of interpersonal communication dynamics in online social networks and social media. Our central hypothesis is that communication dynamics between individuals manifest themselves via three key aspects: the information that is the content of communication, the social engagement i.e. the sociological framework emergent of the

This thesis deals with the analysis of interpersonal communication dynamics in online social networks and social media. Our central hypothesis is that communication dynamics between individuals manifest themselves via three key aspects: the information that is the content of communication, the social engagement i.e. the sociological framework emergent of the communication process, and the channel i.e. the media via which communication takes place. Communication dynamics have been of interest to researchers from multi-faceted domains over the past several decades. However, today we are faced with several modern capabilities encompassing a host of social media websites. These sites feature variegated interactional affordances, ranging from blogging, micro-blogging, sharing media elements as well as a rich set of social actions such as tagging, voting, commenting and so on. Consequently, these communication tools have begun to redefine the ways in which we exchange information, our modes of social engagement, and mechanisms of how the media characteristics impact our interactional behavior. The outcomes of this research are manifold. We present our contributions in three parts, corresponding to the three key organizing ideas. First, we have observed that user context is key to characterizing communication between a pair of individuals. However interestingly, the probability of future communication seems to be more sensitive to the context compared to the delay, which appears to be rather habitual. Further, we observe that diffusion of social actions in a network can be indicative of future information cascades; that might be attributed to social influence or homophily depending on the nature of the social action. Second, we have observed that different modes of social engagement lead to evolution of groups that have considerable predictive capability in characterizing external-world temporal occurrences, such as stock market dynamics as well as collective political sentiments. Finally, characterization of communication on rich media sites have shown that conversations that are deemed "interesting" appear to have consequential impact on the properties of the social network they are associated with: in terms of degree of participation of the individuals in future conversations, thematic diffusion as well as emergent cohesiveness in activity among the concerned participants in the network. Based on all these outcomes, we believe that this research can make significant contribution into a better understanding of how we communicate online and how it is redefining our collective sociological behavior.
ContributorsDe Choudhury, Munmun (Author) / Sundaram, Hari (Thesis advisor) / Candan, K. Selcuk (Committee member) / Liu, Huan (Committee member) / Watts, Duncan J. (Committee member) / Seligmann, Doree D. (Committee member) / Arizona State University (Publisher)
Created2011
149464-Thumbnail Image.png
Description
Online social networks, including Twitter, have expanded in both scale and diversity of content, which has created significant challenges to the average user. These challenges include finding relevant information on a topic and building social ties with like-minded individuals. The fundamental question addressed by this thesis is if an individual

Online social networks, including Twitter, have expanded in both scale and diversity of content, which has created significant challenges to the average user. These challenges include finding relevant information on a topic and building social ties with like-minded individuals. The fundamental question addressed by this thesis is if an individual can leverage social network to search for information that is relevant to him or her. We propose to answer this question by developing computational algorithms that analyze a user's social network. The features of the social network we analyze include the network topology and member communications of a specific user's social network. Determining the "social value" of one's contacts is a valuable outcome of this research. The algorithms we developed were tested on Twitter, which is an extremely popular social network. Twitter was chosen due to its popularity and a majority of the communications artifacts on Twitter is publically available. In this work, the social network of a user refers to the "following relationship" social network. Our algorithm is not specific to Twitter, and is applicable to other social networks, where the network topology and communications are accessible. My approaches are as follows. For a user interested in using the system, I first determine the immediate social network of the user as well as the social contacts for each person in this network. Afterwards, I establish and extend the social network for each user. For each member of the social network, their tweet data are analyzed and represented by using a word distribution. To accomplish this, I use WordNet, a popular lexical database, to determine semantic similarity between two words. My mechanism of search combines both communication distance between two users and social relationships to determine the search results. Additionally, I developed a search interface, where a user can interactively query the system. I conducted preliminary user study to evaluate the quality and utility of my method and system against several baseline methods, including the default Twitter search. The experimental results from the user study indicate that my method is able to find relevant people and identify valuable contacts in one's social circle based on the query. The proposed system outperforms baseline methods in terms of standard information retrieval metrics.
ContributorsXu, Ke (Author) / Sundaram, Hari (Thesis advisor) / Ye, Jieping (Committee member) / Kelliher, Aisling (Committee member) / Arizona State University (Publisher)
Created2010
149538-Thumbnail Image.png
Description
Cloud computing has received significant attention recently as it is a new computing infrastructure to enable rapid delivery of computing resources as a utility in a dynamic, scalable, and visualized manner. SaaS (Software-as-a-Service) provide a now paradigm in cloud computing, which goal is to provide an effective and intelligent way

Cloud computing has received significant attention recently as it is a new computing infrastructure to enable rapid delivery of computing resources as a utility in a dynamic, scalable, and visualized manner. SaaS (Software-as-a-Service) provide a now paradigm in cloud computing, which goal is to provide an effective and intelligent way to support end users' on-demand requirements to computing resources, including maturity levels of customizable, multi-tenancy and scalability. To meet requirements of on-demand, my thesis discusses several critical research problems and proposed solutions using real application scenarios. Service providers receive multiple requests from customers, how to prioritize those service requests to maximize the business values is one of the most important issues in cloud. An innovative prioritization model is proposed, which uses different types of information, including customer, service, environment and workflow information to optimize the performance of the system. To provide "on-demand" services, an accurate demand prediction and provision become critical for the successful of the cloud computing. An effective demand prediction model is proposed, and applied to a real mortgage application. To support SaaS customization and fulfill the various functional and quality requirements of individual tenants, a unified and innovative multi-layered customization framework is proposed to support and manage the variability of SaaS applications. To support scalable SaaS, a hybrid database design to support SaaS customization with two-layer database partitioning is proposed. To support secure SaaS, O-RBAC, an ontology based RBAC (Role based Access Control) model is used for Multi-Tenancy Architecture in clouds. To support a significant number of tenants, an easy to use SaaS construction framework is proposed. As a summary, this thesis discusses the most important research problems in cloud computing, towards effective and intelligent SaaS. The research in this thesis is critical to the development of cloud computing and provides fundamental solutions to those problems.
ContributorsShao, Qihong (Author) / Tsai, Wei-Tek (Thesis advisor) / Askin, Ronald (Committee member) / Ye, Jieping (Committee member) / Naphade, Milind (Committee member) / Arizona State University (Publisher)
Created2011
154217-Thumbnail Image.png
Description
Software-as-a-Service (SaaS) has received significant attention in recent years as major computer companies such as Google, Microsoft, Amazon, and Salesforce are adopting this new approach to develop software and systems. Cloud computing is a computing infrastructure to enable rapid delivery of computing resources as a utility in a dynamic, scalable,

Software-as-a-Service (SaaS) has received significant attention in recent years as major computer companies such as Google, Microsoft, Amazon, and Salesforce are adopting this new approach to develop software and systems. Cloud computing is a computing infrastructure to enable rapid delivery of computing resources as a utility in a dynamic, scalable, and virtualized manner. Computer Simulations are widely utilized to analyze the behaviors of software and test them before fully implementations. Simulation can further benefit SaaS application in a cost-effective way taking the advantages of cloud such as customizability, configurability and multi-tendency.

This research introduces Modeling, Simulation and Analysis for Software-as-Service in Cloud. The researches cover the following topics: service modeling, policy specification, code generation, dynamic simulation, timing, event and log analysis. Moreover, the framework integrates current advantages of cloud: configurability, Multi-Tenancy, scalability and recoverability.

The following chapters are provided in the architecture:

Multi-Tenancy Simulation Software-as-a-Service.

Policy Specification for MTA simulation environment.

Model Driven PaaS Based SaaS modeling.

Dynamic analysis and dynamic calibration for timing analysis.

Event-driven Service-Oriented Simulation Framework.

LTBD: A Triage Solution for SaaS.
ContributorsLi, Wu (Author) / Tsai, Wei-Tek (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Ye, Jieping (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2015