Matching Items (4)

Filtering by

Clear all filters

131992-Thumbnail Image.png

A History of Astrobiology: Social Network Structures of the Emerging Field

Description

Astrobiology, as it is known by official statements and agencies, is “the study of the origin, evolution, distribution, and future of life in the universe” (NASA Astrobiology Insitute , 2018). This definition should suit a dictionary, but it may not

Astrobiology, as it is known by official statements and agencies, is “the study of the origin, evolution, distribution, and future of life in the universe” (NASA Astrobiology Insitute , 2018). This definition should suit a dictionary, but it may not accurately describe the research and motivations of practicing astrobiologists. Furthermore, it does little to characterize the context in which astrobiologists work. The aim of this project is to explore various social network structures within a large body of astrobiological research, intending to both further define the current motivations of astrobiological research and to lend context to these motivations. In this effort, two Web of Science queries were assembled to search for two contrasting corpora related to astrobiological research. The first search, for astrobiology and its close synonym, exobiology, returned a corpus of 3,229 journal articles. The second search, which includes the first and supplements it with further search terms (see Table 1) returned a corpus of 19,017 journal articles. The metadata for these articles were then used to construct various networks. The resulting networks describe an astrobiology that is well entrenched in other related fields, showcasing the interdisciplinarity of astrobiology in its emergence. The networks also showcase the entrenchment of astrobiology in the sociological context in which it is conducted—namely, its relative dependence on the United States government, which should prompt further discussion amongst astrobiology researchers.

Contributors

Created

Date Created
2019-12

136409-Thumbnail Image.png

Predicting Trends on Twitter with Time Series Analysis

Description

Twitter, the microblogging platform, has grown in prominence to the point that the topics that trend on the network are often the subject of the news and other traditional media. By predicting trends on Twitter, it could be possible to

Twitter, the microblogging platform, has grown in prominence to the point that the topics that trend on the network are often the subject of the news and other traditional media. By predicting trends on Twitter, it could be possible to predict the next major topic of interest to the public. With this motivation, this paper develops a model for trends leveraging previous work with k-nearest-neighbors and dynamic time warping. The development of this model provides insight into the length and features of trends, and successfully generalizes to identify 74.3% of trends in the time period of interest. The model developed in this work provides understanding into why par- ticular words trend on Twitter.

Contributors

Created

Date Created
2015-05

135574-Thumbnail Image.png

Company A Data Center Group (DCG) Server Segment Analysis

Description

The purpose of our research was to develop recommendations and/or strategies for Company A's data center group in the context of the server CPU chip industry. We used data collected from the International Data Corporation (IDC) that was provided by

The purpose of our research was to develop recommendations and/or strategies for Company A's data center group in the context of the server CPU chip industry. We used data collected from the International Data Corporation (IDC) that was provided by our team coaches, and data that is accessible on the internet. As the server CPU industry expands and transitions to cloud computing, Company A's Data Center Group will need to expand their server CPU chip product mix to meet new demands of the cloud industry and to maintain high market share. Company A boasts leading performance with their x86 server chips and 95% market segment share. The cloud industry is dominated by seven companies Company A calls "The Super 7." These seven companies include: Amazon, Google, Microsoft, Facebook, Alibaba, Tencent, and Baidu. In the long run, the growing market share of the Super 7 could give them substantial buying power over Company A, which could lead to discounts and margin compression for Company A's main growth engine. Additionally, in the long-run, the substantial growth of the Super 7 could fuel the development of their own design teams and work towards making their own server chips internally, which would be detrimental to Company A's data center revenue. We first researched the server industry and key terminology relevant to our project. We narrowed our scope by focusing most on the cloud computing aspect of the server industry. We then researched what Company A has already been doing in the context of cloud computing and what they are currently doing to address the problem. Next, using our market analysis, we identified key areas we think Company A's data center group should focus on. Using the information available to us, we developed our strategies and recommendations that we think will help Company A's Data Center Group position themselves well in an extremely fast growing cloud computing industry.

Contributors

Agent

Created

Date Created
2016-05

150382-Thumbnail Image.png

Establishing distributed social network trust model in MobiCloud system

Description

This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network

This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate between each two users. The whole trust checking process is divided into two steps: local checking and remote checking. Local checking directly contacts the email server to calculate the trust rate based on user's own email communication history. Remote checking is a distributed computing process to get help from user's social network friends and built the trust rate together. The email-based trust model is built upon a cloud computing framework called MobiCloud. Inside MobiCloud, each user occupies a virtual machine which can directly communicate with others. Based on this feature, the distributed trust model is implemented as a combination of local analysis and remote analysis in the cloud. Experiment results show that the trust evaluation model can give accurate trust rate even in a small scale social network which does not have lots of social connections. With this trust model, the security in both social network services and email communication could be improved.

Contributors

Agent

Created

Date Created
2011