Matching Items (73)
Filtering by
- Creators: Arizona State University

This dissertation explores the interrelationships between periods of rapid social change and regional-scale social identities. Using archaeological data from the Cibola region of the U.S. Southwest, I examine changes in the nature and scale of social identification across a period of demographic and social upheaval (A.D. 1150-1325) marked by a shift from dispersed hamlets, to clustered villages, and eventually, to a small number of large nucleated towns. This transformation in settlement organization entailed a fundamental reconfiguration of the relationships among households and communities across an area of over 45,000 km2. This study draws on contemporary social theory focused on political mobilization and social movements to investigate how changes in the process of social identification can influence the potential for such widespread and rapid transformations. This framework suggests that social identification can be divided into two primary modes; relational identification based on networks of interaction among individuals, and categorical identification based on active expressions of affiliation with social roles or groups to which one can belong. Importantly, trajectories of social transformations are closely tied to the interrelationships between these two modes of identification. This study has three components: Social transformation, indicated by rapid demographic and settlement transitions, is documented through settlement studies drawing on a massive, regional database including over 1,500 sites. Relational identities, indicated by networks of interaction, are documented through ceramic compositional analyses of over 2,100 potsherds, technological characterizations of over 2,000 utilitarian ceramic vessels, and the distributions of different types of domestic architectural features across the region. Categorical identities are documented through stylistic comparisons of a large sample of polychrome ceramic vessels and characterizations of public architectural spaces. Contrary to assumptions underlying traditional approaches to social identity in archaeology, this study demonstrates that relational and categorical identities are not necessarily coterminous. Importantly, however, the strongest patterns of relational connections prior to the period of social transformation in the Cibola region largely predict the scale and structure of changes associated with that transformation. This suggests that the social transformation in the Cibola region, despite occurring in a non-state setting, was governed by similar dynamics to well-documented contemporary examples.

The Open Services Gateway initiative (OSGi) framework is a standard of module system and service platform that implements a complete and dynamic component model. Currently most of OSGi implementations are implemented by Java, which has similarities of Android language. With the emergence of Android operating system, due to the similarities between Java and Android, the integration of module system and service platform from OSGi to Android system attracts more and more attention. How to make OSGi run in Android is a hot topic, further, how to find a mechanism to enable communication between OSGi and Android system is a more advanced area than simply making OSGi running in Android. This paper, which aimed to fulfill SOA (Service Oriented Architecture) and CBA (Component Based Architecture), proposed a solution on integrating Felix OSGi platform with Android system in order to build up Distributed OSGi framework between mobile phones upon XMPP protocol. And in this paper, it not only successfully makes OSGi run on Android, but also invents a mechanism that makes a seamless collaboration between these two platforms.

In modern healthcare environments, there is a strong need to create an infrastructure that reduces time-consuming efforts and costly operations to obtain a patient's complete medical record and uniformly integrates this heterogeneous collection of medical data to deliver it to the healthcare professionals. As a result, healthcare providers are more willing to shift their electronic medical record (EMR) systems to clouds that can remove the geographical distance barriers among providers and patient. Even though cloud-based EMRs have received considerable attention since it would help achieve lower operational cost and better interoperability with other healthcare providers, the adoption of security-aware cloud systems has become an extremely important prerequisite for bringing interoperability and efficient management to the healthcare industry. Since a shared electronic health record (EHR) essentially represents a virtualized aggregation of distributed clinical records from multiple healthcare providers, sharing of such integrated EHRs may comply with various authorization policies from these data providers. In this work, we focus on the authorized and selective sharing of EHRs among several parties with different duties and objectives that satisfies access control and compliance issues in healthcare cloud computing environments. We present a secure medical data sharing framework to support selective sharing of composite EHRs aggregated from various healthcare providers and compliance of HIPAA regulations. Our approach also ensures that privacy concerns need to be accommodated for processing access requests to patients' healthcare information. To realize our proposed approach, we design and implement a cloud-based EHRs sharing system. In addition, we describe case studies and evaluation results to demonstrate the effectiveness and efficiency of our approach.

US Senate is the venue of political debates where the federal bills are formed and voted. Senators show their support/opposition along the bills with their votes. This information makes it possible to extract the polarity of the senators. Similarly, blogosphere plays an increasingly important role as a forum for public debate. Authors display sentiment toward issues, organizations or people using a natural language.
In this research, given a mixed set of senators/blogs debating on a set of political issues from opposing camps, I use signed bipartite graphs for modeling debates, and I propose an algorithm for partitioning both the opinion holders (senators or blogs) and the issues (bills or topics) comprising the debate into binary opposing camps. Simultaneously, my algorithm scales the entities on a univariate scale. Using this scale, a researcher can identify moderate and extreme senators/blogs within each camp, and polarizing versus unifying issues. Through performance evaluations I show that my proposed algorithm provides an effective solution to the problem, and performs much better than existing baseline algorithms adapted to solve this new problem. In my experiments, I used both real data from political blogosphere and US Congress records, as well as synthetic data which were obtained by varying polarization and degree distribution of the vertices of the graph to show the robustness of my algorithm.
I also applied my algorithm on all the terms of the US Senate to the date for longitudinal analysis and developed a web based interactive user interface www.PartisanScale.com to visualize the analysis.
US politics is most often polarized with respect to the left/right alignment of the entities. However, certain issues do not reflect the polarization due to political parties, but observe a split correlating to the demographics of the senators, or simply receive consensus. I propose a hierarchical clustering algorithm that identifies groups of bills that share the same polarization characteristics. I developed a web based interactive user interface www.ControversyAnalysis.com to visualize the clusters while providing a synopsis through distribution charts, word clouds, and heat maps.

Analysis of social networks has the potential to provide insights into wide range of applications. As datasets continue to grow, a key challenge is the lack of a widely applicable algorithmic framework for detection of statistically anomalous networks and network properties. Unlike traditional signal processing, where models of truth or empirical verification and background data exist and are often well defined, these features are commonly lacking in social and other networks. Here, a novel algorithmic framework for statistical signal processing for graphs is presented. The framework is based on the analysis of spectral properties of the residuals matrix. The framework is applied to the detection of innovation patterns in publication networks, leveraging well-studied empirical knowledge from the history of science. Both the framework itself and the application constitute novel contributions, while advancing algorithmic and mathematical techniques for graph-based data and understanding of the patterns of emergence of novel scientific research. Results indicate the efficacy of the approach and highlight a number of fruitful future directions.

Access control is one of the most fundamental security mechanisms used in the design and management of modern information systems. However, there still exists an open question on how formal access control models can be automatically analyzed and fully realized in secure system development. Furthermore, specifying and managing access control policies are often error-prone due to the lack of effective analysis mechanisms and tools. In this dissertation, I present an Assurance Management Framework (AMF) that is designed to cope with various assurance management requirements from both access control system development and policy-based computing. On one hand, the AMF framework facilitates comprehensive analysis and thorough realization of formal access control models in secure system development. I demonstrate how this method can be applied to build role-based access control systems by adopting the NIST/ANSI RBAC standard as an underlying security model. On the other hand, the AMF framework ensures the correctness of access control policies in policy-based computing through automated reasoning techniques and anomaly management mechanisms. A systematic method is presented to formulate XACML in Answer Set Programming (ASP) that allows users to leverage off-the-shelf ASP solvers for a variety of analysis services. In addition, I introduce a novel anomaly management mechanism, along with a grid-based visualization approach, which enables systematic and effective detection and resolution of policy anomalies. I further evaluate the AMF framework through modeling and analyzing multiparty access control in Online Social Networks (OSNs). A MultiParty Access Control (MPAC) model is formulated to capture the essence of multiparty authorization requirements in OSNs. In particular, I show how AMF can be applied to OSNs for identifying and resolving privacy conflicts, and representing and reasoning about MPAC model and policy. To demonstrate the feasibility of the proposed methodology, a suite of proof-of-concept prototype systems is implemented as well.

With more than 70 percent of the world's population expected to live in cities by 2050, it behooves us to understand urban sustainability and improve the capacity of city planners and policymakers to achieve sustainable goals. Producing and linking knowledge to action is a key tenet of sustainability science. This dissertation examines how knowledge-action systems -- the networks of actors involved in the production, sharing and use of policy-relevant knowledge -- work in order to inform what capacities are necessary to effectively attain sustainable outcomes. Little is known about how knowledge-action systems work in cities and how they should be designed to address their complexity. I examined this question in the context of land use and green area governance in San Juan, Puerto Rico, where political conflict exists over extensive development, particularly over the city's remaining green areas. I developed and applied an interdisciplinary framework -- the Knowledge-Action System Analysis (KASA) Framework --that integrates concepts of social network analysis and knowledge co-production (i.e., epistemic cultures and boundary work). Implementation of the framework involved multiple methods --surveys, interviews, participant observations, and document--to gather and analyze quantitative and qualitative data. Results from the analysis revealed a diverse network of actors contributing different types of knowledge, thus showing a potential in governance for creativity and innovation. These capacities, however, are hindered by various political and cultural factors, such as: 1) breakdown in vertical knowledge flow between state, city, and local actors; 2) four divergent visions of San Juan's future emerging from distinct epistemic cultures; 3) extensive boundary work by multiple actors to separate knowledge and planning activities, and attain legitimacy and credibility in the process; 4) and hierarchies of knowledge where outside expertise (e.g., private planning and architectural firms) is privileged over others, thus reflecting competing knowledge systems in land use and green area planning in San Juan. I propose a set of criteria for building just and effective knowledge-action systems for cities, including: context and inclusiveness, adaptability and reflexivity, and polycentricity. In this way, this study also makes theoretical contributions to the knowledge systems literature specifically, and urban sustainability in general.

your words

The rapid urban expansion has greatly extended the physical boundary of our living area, along with a large number of POIs (points of interest) being developed. A POI is a specific location (e.g., hotel, restaurant, theater, mall) that a user may find useful or interesting. When exploring the city and neighborhood, the increasing number of POIs could enrich people's daily life, providing them with more choices of life experience than before, while at the same time also brings the problem of "curse of choices", resulting in the difficulty for a user to make a satisfied decision on "where to go" in an efficient way. Personalized POI recommendation is a task proposed on purpose of helping users filter out uninteresting POIs and reduce time in decision making, which could also benefit virtual marketing.
Developing POI recommender systems requires observation of human mobility w.r.t. real-world POIs, which is infeasible with traditional mobile data. However, the recent development of location-based social networks (LBSNs) provides such observation. Typical location-based social networking sites allow users to "check in" at POIs with smartphones, leave tips and share that experience with their online friends. The increasing number of LBSN users has generated large amounts of LBSN data, providing an unprecedented opportunity to study human mobility for personalized POI recommendation in spatial, temporal, social, and content aspects.
Different from recommender systems in other categories, e.g., movie recommendation in NetFlix, friend recommendation in dating websites, item recommendation in online shopping sites, personalized POI recommendation on LBSNs has its unique challenges due to the stochastic property of human mobility and the mobile behavior indications provided by LBSN information layout. The strong correlations between geographical POI information and other LBSN information result in three major human mobile properties, i.e., geo-social correlations, geo-temporal patterns, and geo-content indications, which are neither observed in other recommender systems, nor exploited in current POI recommendation. In this dissertation, we investigate these properties on LBSNs, and propose personalized POI recommendation models accordingly. The performance evaluated on real-world LBSN datasets validates the power of these properties in capturing user mobility, and demonstrates the ability of our models for personalized POI recommendation.

Security has been one of the top concerns in cloud community while cloud resource abuse and malicious insiders are considered as top threats. Traditionally, Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS) have been widely deployed to manipulate cloud security, with the latter one providing additional prevention capability. However, as one of the most creative networking technologies, Software-Defined Networking (SDN) is rarely used to implement IDPS in the cloud computing environment because the lack of comprehensive development framework and processing flow. Simply migration from traditional IDS/IPS systems to SDN environment are not effective enough for detecting and defending malicious attacks. Hence, in this thesis, we present an IPS development framework to help user easily design and implement their defensive systems in cloud system by SDN technology. This framework enables SDN approaches to enhance the system security and performance. A Traffic Information Platform (TIP) is proposed as the cornerstone with several upper layer security modules such as Detection, Analysis and Prevention components. Benefiting from the flexible, compatible and programmable features of SDN, Customized Detection Engine, Network Topology Finder, Source Tracer and further user-developed security appliances are plugged in our framework to construct a SDN-based defensive system. Two main categories Python-based APIs are designed to support developers for further development. This system is designed and implemented based on the POX controller and Open vSwitch in the cloud computing environment. The efficiency of this framework is demonstrated by a sample IPS implementation and the performance of our framework is also evaluated.