Matching Items (10)

Filtering by

Clear all filters

149858-Thumbnail Image.png

On efficient and scalable attribute based security systems

Description

This dissertation is focused on building scalable Attribute Based Security Systems (ABSS), including efficient and privacy-preserving attribute based encryption schemes and applications to group communications and cloud computing. First of all, a Constant Ciphertext Policy Attribute Based Encryption (CCP-ABE) is

This dissertation is focused on building scalable Attribute Based Security Systems (ABSS), including efficient and privacy-preserving attribute based encryption schemes and applications to group communications and cloud computing. First of all, a Constant Ciphertext Policy Attribute Based Encryption (CCP-ABE) is proposed. Existing Attribute Based Encryption (ABE) schemes usually incur large, linearly increasing ciphertext. The proposed CCP-ABE dramatically reduces the ciphertext to small, constant size. This is the first existing ABE scheme that achieves constant ciphertext size. Also, the proposed CCP-ABE scheme is fully collusion-resistant such that users can not combine their attributes to elevate their decryption capacity. Next step, efficient ABE schemes are applied to construct optimal group communication schemes and broadcast encryption schemes. An attribute based Optimal Group Key (OGK) management scheme that attains communication-storage optimality without collusion vulnerability is presented. Then, a novel broadcast encryption model: Attribute Based Broadcast Encryption (ABBE) is introduced, which exploits the many-to-many nature of attributes to dramatically reduce the storage complexity from linear to logarithm and enable expressive attribute based access policies. The privacy issues are also considered and addressed in ABSS. Firstly, a hidden policy based ABE schemes is proposed to protect receivers' privacy by hiding the access policy. Secondly,a new concept: Gradual Identity Exposure (GIE) is introduced to address the restrictions of hidden policy based ABE schemes. GIE's approach is to reveal the receivers' information gradually by allowing ciphertext recipients to decrypt the message using their possessed attributes one-by-one. If the receiver does not possess one attribute in this procedure, the rest of attributes are still hidden. Compared to hidden-policy based solutions, GIE provides significant performance improvement in terms of reducing both computation and communication overhead. Last but not least, ABSS are incorporated into the mobile cloud computing scenarios. In the proposed secure mobile cloud data management framework, the light weight mobile devices can securely outsource expensive ABE operations and data storage to untrusted cloud service providers. The reported scheme includes two components: (1) a Cloud-Assisted Attribute-Based Encryption/Decryption (CA-ABE) scheme and (2) An Attribute-Based Data Storage (ABDS) scheme that achieves information theoretical optimality.

Contributors

Agent

Created

Date Created
2011

152495-Thumbnail Image.png

An ontology-based approach to attribute management in ABAC environment

Description

Attribute Based Access Control (ABAC) mechanisms have been attracting a lot of interest from the research community in recent times. This is especially because of the flexibility and extensibility it provides by using attributes assigned to subjects as the basis

Attribute Based Access Control (ABAC) mechanisms have been attracting a lot of interest from the research community in recent times. This is especially because of the flexibility and extensibility it provides by using attributes assigned to subjects as the basis for access control. ABAC enables an administrator of a server to enforce access policies on the data, services and other such resources fairly easily. It also accommodates new policies and changes to existing policies gracefully, thereby making it a potentially good mechanism for implementing access control in large systems, particularly in today's age of Cloud Computing. However management of the attributes in ABAC environment is an area that has been little touched upon. Having a mechanism to allow multiple ABAC based systems to share data and resources can go a long way in making ABAC scalable. At the same time each system should be able to specify their own attribute sets independently. In the research presented in this document a new mechanism is proposed that would enable users to share resources and data in a cloud environment using ABAC techniques in a distributed manner. The focus is mainly on decentralizing the access policy specifications for the shared data so that each data owner can specify the access policy independent of others. The concept of ontologies and semantic web is introduced in the ABAC paradigm that would help in giving a scalable structure to the attributes and also allow systems having different sets of attributes to communicate and share resources.

Contributors

Agent

Created

Date Created
2014

153909-Thumbnail Image.png

SDN-based proactive defense mechanism in a cloud system

Description

Cloud computing is known as a new and powerful computing paradigm. This new generation of network computing model delivers both software and hardware as on-demand resources and various services over the Internet. However, the security concerns prevent users from adopting

Cloud computing is known as a new and powerful computing paradigm. This new generation of network computing model delivers both software and hardware as on-demand resources and various services over the Internet. However, the security concerns prevent users from adopting the cloud-based solutions to fulfill the IT requirement for many business critical computing. Due to the resource-sharing and multi-tenant nature of cloud-based solutions, cloud security is especially the most concern in the Infrastructure as a Service (IaaS). It has been attracting a lot of research and development effort in the past few years.

Virtualization is the main technology of cloud computing to enable multi-tenancy.

Computing power, storage, and network are all virtualizable to be shared in an IaaS system. This important technology makes abstract infrastructure and resources available to users as isolated virtual machines (VMs) and virtual networks (VNs). However, it also increases vulnerabilities and possible attack surfaces in the system, since all users in a cloud share these resources with others or even the attackers. The promising protection mechanism is required to ensure strong isolation, mediated sharing, and secure communications between VMs. Technologies for detecting anomalous traffic and protecting normal traffic in VNs are also needed. Therefore, how to secure and protect the private traffic in VNs and how to prevent the malicious traffic from shared resources are major security research challenges in a cloud system.

This dissertation proposes four novel frameworks to address challenges mentioned above. The first work is a new multi-phase distributed vulnerability, measurement, and countermeasure selection mechanism based on the attack graph analytical model. The second work is a hybrid intrusion detection and prevention system to protect VN and VM using virtual machines introspection (VMI) and software defined networking (SDN) technologies. The third work further improves the previous works by introducing a VM profiler and VM Security Index (VSI) to keep track the security status of each VM and suggest the optimal countermeasure to mitigate potential threats. The final work is a SDN-based proactive defense mechanism for a cloud system using a reconfiguration model and moving target defense approaches to actively and dynamically change the virtual network configuration of a cloud system.

Contributors

Agent

Created

Date Created
2015

151152-Thumbnail Image.png

Assurance management framework for access control systems

Description

Access control is one of the most fundamental security mechanisms used in the design and management of modern information systems. However, there still exists an open question on how formal access control models can be automatically analyzed and fully realized

Access control is one of the most fundamental security mechanisms used in the design and management of modern information systems. However, there still exists an open question on how formal access control models can be automatically analyzed and fully realized in secure system development. Furthermore, specifying and managing access control policies are often error-prone due to the lack of effective analysis mechanisms and tools. In this dissertation, I present an Assurance Management Framework (AMF) that is designed to cope with various assurance management requirements from both access control system development and policy-based computing. On one hand, the AMF framework facilitates comprehensive analysis and thorough realization of formal access control models in secure system development. I demonstrate how this method can be applied to build role-based access control systems by adopting the NIST/ANSI RBAC standard as an underlying security model. On the other hand, the AMF framework ensures the correctness of access control policies in policy-based computing through automated reasoning techniques and anomaly management mechanisms. A systematic method is presented to formulate XACML in Answer Set Programming (ASP) that allows users to leverage off-the-shelf ASP solvers for a variety of analysis services. In addition, I introduce a novel anomaly management mechanism, along with a grid-based visualization approach, which enables systematic and effective detection and resolution of policy anomalies. I further evaluate the AMF framework through modeling and analyzing multiparty access control in Online Social Networks (OSNs). A MultiParty Access Control (MPAC) model is formulated to capture the essence of multiparty authorization requirements in OSNs. In particular, I show how AMF can be applied to OSNs for identifying and resolving privacy conflicts, and representing and reasoning about MPAC model and policy. To demonstrate the feasibility of the proposed methodology, a suite of proof-of-concept prototype systems is implemented as well.

Contributors

Agent

Created

Date Created
2012

150382-Thumbnail Image.png

Establishing distributed social network trust model in MobiCloud system

Description

This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network

This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate between each two users. The whole trust checking process is divided into two steps: local checking and remote checking. Local checking directly contacts the email server to calculate the trust rate based on user's own email communication history. Remote checking is a distributed computing process to get help from user's social network friends and built the trust rate together. The email-based trust model is built upon a cloud computing framework called MobiCloud. Inside MobiCloud, each user occupies a virtual machine which can directly communicate with others. Based on this feature, the distributed trust model is implemented as a combination of local analysis and remote analysis in the cloud. Experiment results show that the trust evaluation model can give accurate trust rate even in a small scale social network which does not have lots of social connections. With this trust model, the security in both social network services and email communication could be improved.

Contributors

Agent

Created

Date Created
2011

150827-Thumbnail Image.png

Secure sharing of electronic medical records in cloud computing

Description

In modern healthcare environments, there is a strong need to create an infrastructure that reduces time-consuming efforts and costly operations to obtain a patient's complete medical record and uniformly integrates this heterogeneous collection of medical data to deliver it to

In modern healthcare environments, there is a strong need to create an infrastructure that reduces time-consuming efforts and costly operations to obtain a patient's complete medical record and uniformly integrates this heterogeneous collection of medical data to deliver it to the healthcare professionals. As a result, healthcare providers are more willing to shift their electronic medical record (EMR) systems to clouds that can remove the geographical distance barriers among providers and patient. Even though cloud-based EMRs have received considerable attention since it would help achieve lower operational cost and better interoperability with other healthcare providers, the adoption of security-aware cloud systems has become an extremely important prerequisite for bringing interoperability and efficient management to the healthcare industry. Since a shared electronic health record (EHR) essentially represents a virtualized aggregation of distributed clinical records from multiple healthcare providers, sharing of such integrated EHRs may comply with various authorization policies from these data providers. In this work, we focus on the authorized and selective sharing of EHRs among several parties with different duties and objectives that satisfies access control and compliance issues in healthcare cloud computing environments. We present a secure medical data sharing framework to support selective sharing of composite EHRs aggregated from various healthcare providers and compliance of HIPAA regulations. Our approach also ensures that privacy concerns need to be accommodated for processing access requests to patients' healthcare information. To realize our proposed approach, we design and implement a cloud-based EHRs sharing system. In addition, we describe case studies and evaluation results to demonstrate the effectiveness and efficiency of our approach.

Contributors

Agent

Created

Date Created
2012

149360-Thumbnail Image.png

vLab-- a cloud based resource and service sharing platform for computer and network security education

Description

Cloud computing systems fundamentally provide access to large pools of data and computational resources through a variety of interfaces similar in spirit to existing grid and HPC resource management and programming systems. These types of systems offer a new programming

Cloud computing systems fundamentally provide access to large pools of data and computational resources through a variety of interfaces similar in spirit to existing grid and HPC resource management and programming systems. These types of systems offer a new programming target for scalable application developers and have gained popularity over the past few years. However, most cloud computing systems in operation today are proprietary and rely upon infrastructure that is invisible to the research community, or are not explicitly designed to be instrumented and modified by systems researchers. In this research, Xen Server Management API is employed to build a framework for cloud computing that implements what is commonly referred to as Infrastructure as a Service (IaaS); systems that give users the ability to run and control entire virtual machine instances deployed across a variety physical resources. The goal of this research is to develop a cloud based resource and service sharing platform for Computer network security education a.k.a Virtual Lab.

Contributors

Agent

Created

Date Created
2010

153335-Thumbnail Image.png

Policy-driven security management for gateway-oriented reconfigurable ecosystems

Description

With the increasing user demand for low latency, elastic provisioning of computing resources coupled with ubiquitous and on-demand access to real-time data, cloud computing has emerged as a popular

With the increasing user demand for low latency, elastic provisioning of computing resources coupled with ubiquitous and on-demand access to real-time data, cloud computing has emerged as a popular computing paradigm to meet growing user demands. However, with the introduction and rising use of wear- able technology and evolving uses of smart-phones, the concept of Internet of Things (IoT) has become a prevailing notion in the currently growing technology industry. Cisco Inc. has projected a data creation of approximately 403 Zetabytes (ZB) by 2018. The combination of bringing benign devices and connecting them to the web has resulted in exploding service and data aggregation requirements, thus requiring a new and innovative computing platform. This platform should have the capability to provide robust real-time data analytics and resource provisioning to clients, such as IoT users, on-demand. Such a computation model would need to function at the edge-of-the-network, forming a bridge between the large cloud data centers and the distributed connected devices.

This research expands on the notion of bringing computational power to the edge- of-the-network, and then integrating it with the cloud computing paradigm whilst providing services to diverse IoT-based applications. This expansion is achieved through the establishment of a new computing model that serves as a platform for IoT-based devices to communicate with services in real-time. We name this paradigm as Gateway-Oriented Reconfigurable Ecosystem (GORE) computing. Finally, this thesis proposes and discusses the development of a policy management framework for accommodating our proposed computational paradigm. The policy framework is designed to serve both the hosted applications and the GORE paradigm by enabling them to function more efficiently. The goal of the framework is to ensure uninterrupted communication and service delivery between users and their applications.

Contributors

Agent

Created

Date Created
2015

154606-Thumbnail Image.png

Data Protection over Cloud

Description

Data protection has long been a point of contention and a vastly researched field. With the advent of technology and advances in Internet technologies, securing data has become much more challenging these days. Cloud services have become very popular. Given

Data protection has long been a point of contention and a vastly researched field. With the advent of technology and advances in Internet technologies, securing data has become much more challenging these days. Cloud services have become very popular. Given the ease of access and availability of the systems, it is not easy to not use cloud to store data. This however, pose a significant risk to data security as more of your data is available to a third party. Given the easy transmission and almost infinite storage of data, securing one's sensitive information has become a major challenge.

Cloud service providers may not be trusted completely with your data. It is not very uncommon to snoop over the data for finding interesting patterns to generate ad revenue or divulge your information to a third party, e.g. government and law enforcing agencies. For enterprises who use cloud service, it pose a risk for their intellectual property and business secrets. With more and more employees using cloud for their day to day work, business now face a risk of losing or leaking out information.

In this thesis, I have focused on ways to protect data and information over cloud- a third party not authorized to use your data, all this while still utilizing cloud services for transfer and availability of data. This research proposes an alternative to an on-premise secure infrastructure giving exibility to user for protecting the data and control over it. The project uses cryptography to protect data and create a secure architecture for secret key migration in order to decrypt the data securely for the intended recipient. It utilizes Intel's technology which gives it an added advantage over other existing solutions.

Contributors

Agent

Created

Date Created
2016

153969-Thumbnail Image.png

Techniques for supporting prediction of security breaches in critical cloud infrastructures using Bayesian network and Markov decision process

Description

Emerging trends in cyber system security breaches in critical cloud infrastructures show that attackers have abundant resources (human and computing power), expertise and support of large organizations and possible foreign governments. In order to greatly improve the protection of critical

Emerging trends in cyber system security breaches in critical cloud infrastructures show that attackers have abundant resources (human and computing power), expertise and support of large organizations and possible foreign governments. In order to greatly improve the protection of critical cloud infrastructures, incorporation of human behavior is needed to predict potential security breaches in critical cloud infrastructures. To achieve such prediction, it is envisioned to develop a probabilistic modeling approach with the capability of accurately capturing system-wide causal relationship among the observed operational behaviors in the critical cloud infrastructure and accurately capturing probabilistic human (users’) behaviors on subsystems as the subsystems are directly interacting with humans. In our conceptual approach, the system-wide causal relationship can be captured by the Bayesian network, and the probabilistic human behavior in the subsystems can be captured by the Markov Decision Processes. The interactions between the dynamically changing state graphs of Markov Decision Processes and the dynamic causal relationships in Bayesian network are key components in such probabilistic modelling applications. In this thesis, two techniques are presented for supporting the above vision to prediction of potential security breaches in critical cloud infrastructures. The first technique is for evaluation of the conformance of the Bayesian network with the multiple MDPs. The second technique is to evaluate the dynamically changing Bayesian network structure for conformance with the rules of the Bayesian network using a graph checker algorithm. A case study and its simulation are presented to show how the two techniques support the specific parts in our conceptual approach to predicting system-wide security breaches in critical cloud infrastructures.

Contributors

Agent

Created

Date Created
2015