Matching Items (4)
Filtering by

Clear all filters

152236-Thumbnail Image.png
Description
Continuous Delivery, as one of the youngest and most popular member of agile model family, has become a popular concept and method in software development industry recently. Instead of the traditional software development method, which requirements and solutions must be fixed before starting software developing, it promotes adaptive planning, evolutionary

Continuous Delivery, as one of the youngest and most popular member of agile model family, has become a popular concept and method in software development industry recently. Instead of the traditional software development method, which requirements and solutions must be fixed before starting software developing, it promotes adaptive planning, evolutionary development and delivery, and encourages rapid and flexible response to change. However, several problems prevent Continuous Delivery to be introduced into education world. Taking into the consideration of the barriers, we propose a new Cloud based Continuous Delivery Software Developing System. This system is designed to fully utilize the whole life circle of software developing according to Continuous Delivery concepts in a virtualized environment in Vlab platform.
ContributorsDeng, Yuli (Author) / Huang, Dijiang (Thesis advisor) / Davulcu, Hasan (Committee member) / Chen, Yinong (Committee member) / Arizona State University (Publisher)
Created2013
150382-Thumbnail Image.png
Description
This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate

This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate between each two users. The whole trust checking process is divided into two steps: local checking and remote checking. Local checking directly contacts the email server to calculate the trust rate based on user's own email communication history. Remote checking is a distributed computing process to get help from user's social network friends and built the trust rate together. The email-based trust model is built upon a cloud computing framework called MobiCloud. Inside MobiCloud, each user occupies a virtual machine which can directly communicate with others. Based on this feature, the distributed trust model is implemented as a combination of local analysis and remote analysis in the cloud. Experiment results show that the trust evaluation model can give accurate trust rate even in a small scale social network which does not have lots of social connections. With this trust model, the security in both social network services and email communication could be improved.
ContributorsZhong, Yunji (Author) / Huang, Dijiang (Thesis advisor) / Dasgupta, Partha (Committee member) / Syrotiuk, Violet (Committee member) / Arizona State University (Publisher)
Created2011
156904-Thumbnail Image.png
Description
Machine learning tutorials often employ an application and runtime specific solution for a given problem in which users are expected to have a broad understanding of data analysis and software programming. This thesis focuses on designing and implementing a new, hands-on approach to teaching machine learning by streamlining the process

Machine learning tutorials often employ an application and runtime specific solution for a given problem in which users are expected to have a broad understanding of data analysis and software programming. This thesis focuses on designing and implementing a new, hands-on approach to teaching machine learning by streamlining the process of generating Inertial Movement Unit (IMU) data from multirotor flight sessions, training a linear classifier, and applying said classifier to solve Multi-rotor Activity Recognition (MAR) problems in an online lab setting. MAR labs leverage cloud computing and data storage technologies to host a versatile environment capable of logging, orchestrating, and visualizing the solution for an MAR problem through a user interface. MAR labs extends Arizona State University’s Visual IoT/Robotics Programming Language Environment (VIPLE) as a control platform for multi-rotors used in data collection. VIPLE is a platform developed for teaching computational thinking, visual programming, Internet of Things (IoT) and robotics application development. As a part of this education platform, this work also develops a 3D simulator capable of simulating the programmable behaviors of a robot within a maze environment and builds a physical quadrotor for use in MAR lab experiments.
ContributorsDe La Rosa, Matthew Lee (Author) / Chen, Yinong (Thesis advisor) / Collofello, James (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2018
151006-Thumbnail Image.png
Description
The Open Services Gateway initiative (OSGi) framework is a standard of module system and service platform that implements a complete and dynamic component model. Currently most of OSGi implementations are implemented by Java, which has similarities of Android language. With the emergence of Android operating system, due to the similarities

The Open Services Gateway initiative (OSGi) framework is a standard of module system and service platform that implements a complete and dynamic component model. Currently most of OSGi implementations are implemented by Java, which has similarities of Android language. With the emergence of Android operating system, due to the similarities between Java and Android, the integration of module system and service platform from OSGi to Android system attracts more and more attention. How to make OSGi run in Android is a hot topic, further, how to find a mechanism to enable communication between OSGi and Android system is a more advanced area than simply making OSGi running in Android. This paper, which aimed to fulfill SOA (Service Oriented Architecture) and CBA (Component Based Architecture), proposed a solution on integrating Felix OSGi platform with Android system in order to build up Distributed OSGi framework between mobile phones upon XMPP protocol. And in this paper, it not only successfully makes OSGi run on Android, but also invents a mechanism that makes a seamless collaboration between these two platforms.
ContributorsDong, Xinyi (Author) / Huang, Dijiang (Thesis advisor) / Dasgupta, Partha (Committee member) / Chen, Yinong (Committee member) / Arizona State University (Publisher)
Created2012