Matching Items (2)
148184-Thumbnail Image.png
Description

In theory, Electric Vehicle (EV) ownership and renewable energy seem like a perfect solution to our climate crisis; however, unless done properly, the effects can be less than ideal. We need to find a way to maximize the impact of our efforts to reduce carbon emissions, which is exactly what

In theory, Electric Vehicle (EV) ownership and renewable energy seem like a perfect solution to our climate crisis; however, unless done properly, the effects can be less than ideal. We need to find a way to maximize the impact of our efforts to reduce carbon emissions, which is exactly what the heart of my paper gets to. Carbon emissions are bad for the environment because they comprise a large majority of greenhouse gases. Greenhouse gases have recently become dramatically out of balance and have resulted in an increase in respiratory diseases from smog and air pollution, as well as extreme weather and an increase in wildfires. Getting these greenhouse gases back in balance and maintaining an ecological balance is the goal of sustainability. According to the Environmental Protection Agency (the EPA), transportation makes up 29% of greenhouse gas emissions in the US followed closely by electricity generation at 28%, which makes Electric Vehicles the perfect target for reducing greenhouse gas emissions<br/>Arizona has many unique constraints when it comes to its electric infrastructure and its electric generation energy mix, which means the impacts of EV ownership become extremely complicated.<br/> In my paper, I aim to address the question: What are the carbon impact effects of Electric Vehicles (EVs) in Arizona through the lens of 1) the time of day that charging occurs, 2) the infrastructure needed to support EV penetration and 3) the incentives given to the public to help provide the impetus for making greener choices? Using the best available research on how EVs are being adopted to reduce emissions, I will provide conclusive recommendations and a framework for how Arizona can best reduce carbon emissions through EVs.

ContributorsSherman, Jessica Janiece (Author) / Keeler, Lauren (Thesis director) / Shaeffer, Lisa (Committee member) / Computer Science and Engineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147516-Thumbnail Image.png
Description

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the rapid adoption of electric vehicles; sales of electric vehicles in 2020 are more than double what they were only a year prior. With such staggering growth it is important to understand how lithium is sourced and what that means for the environment. Will production even be capable of meeting the demand as more industries make use of this valuable element? How will the environmental impact of lithium affect growth? This thesis attempts to answer these questions as the world looks to a decade of rapid growth for lithium ion batteries.

ContributorsMelton, John (Author) / Brian, Jennifer (Thesis director) / Karwat, Darshawn (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05