Matching Items (3)
Filtering by

Clear all filters

Does School Participatory Budgeting Increase Students’ Political Efficacy? Bandura’s “Sources,” Civic Pedagogy, and Education for Democracy
Description

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy in one middle school in Arizona. Our participants’ (n = 28) responses on survey items designed to measure self-perceived growth in political efficacy indicated a large effect size (Cohen’s d = 1.46), suggesting that SPB is an effective approach to civic pedagogy, with promising prospects for developing students’ political efficacy.

ContributorsGibbs, Norman P. (Author) / Bartlett, Tara Lynn (Author) / Schugurensky, Daniel, 1958- (Author)
Created2021-05-01
Integrated Clinical Animal Behavior
Description

In this paper, I outline the drawbacks with the two main behavioral approaches to animal behavior problems and argue that each alone is insufficient to underpin a field of clinical animal behavior. Applied ethology offers an interest in an animal’s spontaneous behavior in natural contexts, understood within an ecological and

In this paper, I outline the drawbacks with the two main behavioral approaches to animal behavior problems and argue that each alone is insufficient to underpin a field of clinical animal behavior. Applied ethology offers an interest in an animal’s spontaneous behavior in natural contexts, understood within an ecological and evolutionary context, but lacks an awareness of mechanisms that can be manipulated to modify the behavior of individual animals. Behaviorism in the form of Applied Behavior Analysis offers a toolkit of techniques for modifying the behavior of individual animals, but has seldom been applied to non-human species, and often overlooks phylogenetic aspects of behavior. Notwithstanding the historical animosities between the two fields of animal behavior they are philosophically highly compatible – both being empiricist schools stemming ultimately from Darwin’s insights. Though each individually is incomplete, I argue that an integrated approach that synthesizes the strengths of each holds great promise in helping the many animals who need our assistance to survive and thrive in human-dominated environments.

ContributorsWynne, Clive D. L. (Author)
Created2021-02-05
129704-Thumbnail Image.png
Description

Pay-for-performance (PFP) is a relatively new approach to agricultural conservation that attaches an incentive payment to quantified reductions in nutrient runoff from a participating farm. Similar to a payment for ecosystem services approach, PFP lends itself to providing incentives for the most beneficial practices at the field level. To date,

Pay-for-performance (PFP) is a relatively new approach to agricultural conservation that attaches an incentive payment to quantified reductions in nutrient runoff from a participating farm. Similar to a payment for ecosystem services approach, PFP lends itself to providing incentives for the most beneficial practices at the field level. To date, PFP conservation in the U.S. has only been applied in small pilot programs. Because monitoring conservation performance for each field enrolled in a program would be cost-prohibitive, field-level modeling can provide cost-effective estimates of anticipated improvements in nutrient runoff. We developed a PFP system that uses a unique application of one of the leading agricultural models, the USDA's Soil and Water Assessment Tool, to evaluate the nutrient load reductions of potential farm practice changes based on field-level agronomic and management data. The initial phase of the project focused on simulating individual fields in the River Raisin watershed in southeastern Michigan. Here we present development of the modeling approach and results from the pilot year, 2015-2016. These results stress that (1) there is variability in practice effectiveness both within and between farms, and thus there is not one "best practice" for all farms, (2) conservation decisions are made most effectively at the scale of the farm field rather than the sub-watershed or watershed level, and (3) detailed, field-level management information is needed to accurately model and manage on-farm nutrient loadings.

ContributorsMuenich, Rebecca (Author) / Kalcic, M. M. (Author) / Winsten, J. (Author) / Fisher, K. (Author) / Day, M. (Author) / O'Neil, G. (Author) / Wang, Y.-C. (Author) / Scavia, D. (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2017