Matching Items (8)
162318-Thumbnail Image.png
Description

TSPO was discovered in 1977 and it’s function is still currently unknown. Significant research has suggested that TSPO functions in steroidogenesis to import cholesterol from the mitochondrial outer membrane (MOM) to the mitochondrial inner membrane (MIM) where it is converted into steroids. There were two indications that this is TSPOs

TSPO was discovered in 1977 and it’s function is still currently unknown. Significant research has suggested that TSPO functions in steroidogenesis to import cholesterol from the mitochondrial outer membrane (MOM) to the mitochondrial inner membrane (MIM) where it is converted into steroids. There were two indications that this is TSPOs main function: its elevated levels in steroidogenic tissue and its primary location in the MOM. There is evidence of TSPO binding cholesterol with high affinity, however there is not currently evidence of TSPO transporting cholesterol. STAR, ACBD1, and ACBD3 are proteins thought to be associated with TSPO and steroidogenesis. However, the distribution of these proteins in various eukaryotes show little similarity suggesting that TSPO functions independently. The function of TSPO in steroid synthesis has been called into question because a well-cited research paper claimed that TSPO knockdown resulted in embryonic lethal mice, however there was no evidence presented from their study and this experiment did not produce the same results when repeated in later studies. There are also studies that show TSPO may not be involved in regulation of sterols, but instead may regulate cell stress. The elevated levels of TSPO during inflammation suggest a role for TSPO in cellular stress. Binding interactions with porphyrins and heme also support that TSPO may modulate stress levels. We used the phylogeny of TSPO in order to gain greater insight into the evolutionary function of TSPO. NCBI BLAST searches revealed that TSPO was present in bacteria and had a widespread but patchy distribution in a small set of eukaryotes. From these initial results, we were prompted to search a larger set of eukaryotes for TSPO. All of the prokaryotic and eukaryotic TSPO sequences were used to create a phylogenetic tree that would provide greater insight into the evolution and function of TSPO. If TSPO was from a common ancestor, it is probable that its function is related to sterol regulation whereas if gained in eukaryotes by horizontal gene transfer from bacteria its function is related to stress regulation. The phylogenetic tree was most consistent with an ancestral origin of TSPO with an evolutionary function related to steroid synthesis regulation. However, there is not sufficient research to confirm the function of TSPO.

ContributorsLarson, Stephanie (Author) / Wideman, Jeremy (Thesis director) / Poon, Pak (Committee member) / Barrett, The Honors College (Contributor) / School of Music, Dance and Theatre (Contributor) / School of Life Sciences (Contributor)
Created2021-12
162234-Thumbnail Image.png
Description
In the face of the sixth mass extinction on Earth, with the flowering plant family Cactaceae assessed as the fifth most endangered plant or animal family by the International Union for the Conservation of Nature (IUCN), it is imperative that all available tools be used to understand the biodiversity, habitat

In the face of the sixth mass extinction on Earth, with the flowering plant family Cactaceae assessed as the fifth most endangered plant or animal family by the International Union for the Conservation of Nature (IUCN), it is imperative that all available tools be used to understand the biodiversity, habitat suitability, climate change impacts and population viability of cacti. Within the Cactaceae, Mammillaria Haw and the closely related genus Cochemiea (K. Brandegee) Walton of Baja California, Mexico, are species-rich, with 46 regionally endemic taxa, 12 of which have been assessed as threatened or endangered by the IUCN. This study clarifies the evolutionary relationships in the Mammilloid clade, a complex and species-rich clade in tribe Cacteae, and generic circumscription of the genera Mammillaria Haw. and Cochemiea (K. Brandegee) Walton, estimates divergence times, diversification rates and ancestral ranges and explores habitat suitability and the risk of extinction of a representative species within these genera. The r species, Cochemiea halei (K. Brandegee) Walton, a narrowly distributed island endemic, is assessed using species distribution modeling (SDM) and population viability analysis (PVA). SDM in this study includes projections to two climate change scenarios over the next century, using four representative particle concentration pathways, and the PVA uses habitat-specific deterministic and stochastic models. The results of molecular phylogenetic analyses of the Mammilloid cladde restore the genus Mammillaria to monophyly via new combinations in the genus Cochemiea. The taxa in this study are shown to be of recent origin resulting from rapid diversification and radiation. Geological and climatic forces at multiple scales appear to be responsible for the high degree of biodiversity and endemism of these cacti. SDM shows that C. halei is likely to be stranded in its fragmented island habitat, has a facultative adaptation to ultramafic soils, and faces a 21%–53% contraction of its range on the islands under climate change scenarios. PVA suggests that C. halei is at increased risk of extinction in response to slight decreases in fecundity and persistence. In general, the perspectives in this dissertation fill several gaps in our prior knowledge of the evolution, biogeography, and conservation pressures of an important, species-rich group of cacti, occurring in a region of high biodiversity and endemism.
ContributorsBreslin, Peter (Author) / Wojciechowski, Martin F (Thesis advisor) / Albuquerque, Fabio (Committee member) / Fehlberg, Shannon (Committee member) / Majure, Lucas (Committee member) / Rebman, Jon (Committee member) / Arizona State University (Publisher)
Created2020
173894-Thumbnail Image.png
Description

In nineteenth century Great Britain, Thomas Henry Huxley proposed connections between the development of organisms and their evolutionary histories, critiqued previously held concepts of homology, and promoted Charles Darwin's theory of evolution. Many called him Darwin's Bulldog. Huxley helped professionalize and redefine British science. He wrote about philosophy, religion, and

In nineteenth century Great Britain, Thomas Henry Huxley proposed connections between the development of organisms and their evolutionary histories, critiqued previously held concepts of homology, and promoted Charles Darwin's theory of evolution. Many called him Darwin's Bulldog. Huxley helped professionalize and redefine British science. He wrote about philosophy, religion, and social issues, and researched and theorized in many biological fields. Huxley made several methodological contributions to both invertebrate and vertebrate embryology and development, and he helped shape the extra-scientific discourse for these fields.

Created2013-11-26
173320-Thumbnail Image.png
Description

Stephen Jay Gould studied snail fossils and worked at Harvard University in Cambridge, Massachusetts during the latter half of the twentieth century. He contributed to philosophical, historical, and scientific ideas in paleontology, evolutionary theory, and developmental biology. Gould, with Niles Eldredge, proposed the theory of punctuated equilibrium, a view of

Stephen Jay Gould studied snail fossils and worked at Harvard University in Cambridge, Massachusetts during the latter half of the twentieth century. He contributed to philosophical, historical, and scientific ideas in paleontology, evolutionary theory, and developmental biology. Gould, with Niles Eldredge, proposed the theory of punctuated equilibrium, a view of evolution by which species undergo long periods of stasis followed by rapid changes over relatively short periods instead of continually accumulating slow changes over millions of years. In his 1977 book, Ontogeny and Phylogeny, Gould reconstructed a history of developmental biology and stressed the importance of development to evolutionary biology. In a 1979 paper coauthored with Richard Lewontin, Gould and Lewonitn criticized many evolutionary bioligists for relying solely on adaptive evolution as an explanation for morphological change, and for failing to consider other explanations, such as developmental constraints.

Created2014-02-18
172876-Thumbnail Image.png
Description

Ontogeny and Phylogeny is a book published in 1977, in which the author Stephen J. Gould, who worked in the US, tells a history of the theory of recapitulation. A theory of recapitulation aims to explain the relationship between the embryonic development of an organism (ontogeny) and the evolution of

Ontogeny and Phylogeny is a book published in 1977, in which the author Stephen J. Gould, who worked in the US, tells a history of the theory of recapitulation. A theory of recapitulation aims to explain the relationship between the embryonic development of an organism (ontogeny) and the evolution of that organism's species (phylogeny). Although there are several variations of recapitulationist theories, most claim that during embryonic development an organism repeats the adult stages of organisms from those species in it's evolutionary history. Gould suggests that, although fewer biologists invoked recapitulation theories in the twentieth century compared to those in the nineteenth and eighteenth centuries, some aspects of the theory of recapitulation remained important for understanding evolution. Gould notes that the concepts of acceleration and retardation during development entail that changes in developmental timing (heterochrony) can result in a trait appearing either earlier or later than normal in developmental processes. Gould argues that these changes in the timing of embryonic development provide the raw materials or novelties upon which natural selection acts.

Created2014-10-21
Phylogeny of March Mammal Madness Contestants: 2013-2024
Description

This phylogeny poster displays the relationships of all the combatants in the March Mammal Madness tournament 2013-2024. Included are:

  1. The PDF version of the poster
  2. The PNG version of the poster
  3. A list of references consulted for generating the poster.
ContributorsChen, Albert (Author)
Created2024-03-29