Matching Items (2)
Filtering by

Clear all filters

136252-Thumbnail Image.png
Description
This project aims to address the current protocol regarding the diagnosis and treatment of traumatic brain injury (TBI) in medical industries around the world. Although there are various methods used to qualitatively determine if TBI has occurred to a patient, this study attempts to aid in the creation of a

This project aims to address the current protocol regarding the diagnosis and treatment of traumatic brain injury (TBI) in medical industries around the world. Although there are various methods used to qualitatively determine if TBI has occurred to a patient, this study attempts to aid in the creation of a system for quantitative measurement of TBI and its relative magnitude. Through a method of artificial evolution/selection called phage display, an antibody that binds highly specifically to a post-TBI upregulated brain chondroitin sulfate proteoglycan called neurocan has been identified. As TG1 Escheria Coli bacteria were infected with KM13 helper phage and M13 filamentous phage in conjunction, monovalent display of antibody fragments (ScFv) was performed. The ScFv bind directly to the neurocan and from screening, phage that produced ScFv's with higher affinity and specificity to neurocan were separated and purified. Future research aims to improve the ScFv characteristics through increased screening toward neurocan. The identification of a highly specific antibody could lead to improved targeting of neurocan post-TBI in-vivo, aiding researchers in quantitatively defining TBI by visualizing its magnitude.
ContributorsSeelig, Timothy Scott (Author) / Stabenfeldt, Sarah (Thesis director) / Ankeny, Casey (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
135775-Thumbnail Image.png
Description
Concept maps are teaching tools used to encourage students to utilize active learning strategies and to take responsibility for their own learning. The purpose of this two-semester study is to evaluate the use of concept maps in a junior-level Biomaterials classroom. The maps are assessed based on students' attitude, achievement,

Concept maps are teaching tools used to encourage students to utilize active learning strategies and to take responsibility for their own learning. The purpose of this two-semester study is to evaluate the use of concept maps in a junior-level Biomaterials classroom. The maps are assessed based on students' attitude, achievement, and persistence. No significant correlation was determined between concept map score and achievement (correlation coefficient = 0.1739 in the first semester, 0.2208 in the first set of the second semester, and 0.0829 in the second set of the second semester), though further studies should be completed to support the effects of concept mapping. Statistically significant increases in student attitude regarding concept mapping cost, interest, and utility between the two semesters were found (p = 0.013, p = 0.105, p = 0.002, p = 0.083 overall). Persistence was moderately high throughout the entire study (98% in the first semester and 100% in the second semester).
ContributorsHolm, Mikayle Ashlyn (Author) / Ankeny, Casey (Thesis director) / Graham, Kaely (Committee member) / Harrington Bioengineering Program (Contributor) / Biomedical Informatics Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05