Matching Items (2)

Filtering by

Clear all filters

134090-Thumbnail Image.png

A Review of the Current Understanding on Immune Cell Sensitivity to Variation in Energy Availability

Description

This study takes a broad look into the existing research on the relationship between two physiological topics, nutrition and immunity in vertebrates, specifically the mammalian and avian branches. This was achieved by critiquing available studies on different types of immune

This study takes a broad look into the existing research on the relationship between two physiological topics, nutrition and immunity in vertebrates, specifically the mammalian and avian branches. This was achieved by critiquing available studies on different types of immune cells, and how variable energy availability, as well as specific pathogens, impact cell function. Notably, most studies examined individuals with compromised immune systems, which reveals an existing knowledge gap in the linkages between nutrition and immunity in healthy organisms. Links between immunity and nutrition were identified across the studies, with the three main energy molecules, carbohydrates, lipids, and proteins, implicated in functional roles as immune modulators. Stimulatory and inhibitory effects occur dependent on elevated and depleted nutrient levels, and multiple cell types are sensitive to changes in nutrient availability. Further studies should be conducted on healthy individuals of model species, as well as wildlife and other non-model species to identify and describe the effects of host nutritional status on the spread of pathogens and the implications at the population level for humans, domestic animals, and wildlife.

Contributors

Agent

Created

Date Created
2017-12

134715-Thumbnail Image.png

Evaluating the viability of a DNA-based chip targeted for C. trachomatis, N. gonorrhoeae, and other pathogens of interest

Description

Sexually transmitted diseases like gonorrhea and chlamydia, standardly treated with antibiotics, produce over 1.2 million cases annually in the emergency department (Jenkins et al., 2013). To determine a need for antibiotics, hospital labs utilize bacterial cultures to isolate and identify

Sexually transmitted diseases like gonorrhea and chlamydia, standardly treated with antibiotics, produce over 1.2 million cases annually in the emergency department (Jenkins et al., 2013). To determine a need for antibiotics, hospital labs utilize bacterial cultures to isolate and identify possible pathogens. Unfortunately, this technique can take up to 72 hours, leading to several physicians presumptively treating patients based solely on history and physical presentation. With vague standards for diagnosis and a high percentage of asymptomatic carriers, several patients undergo two scenarios; over- or under-treatment. These two scenarios can lead to consequences like unnecessary exposure to antibiotics and development of secondary conditions (for example: pelvic inflammatory disease, infertility, etc.). This presents a need for a laboratory technique that can provide reliable results in an efficient matter. The viability of DNA-based chip targeted for C. trachomatis, N. gonorrhoeae, and other pathogens of interest were evaluated. The DNA-based chip presented several advantages as it can be easily integrated as a routine test given the process is already well-known, is customizable and able to target multiple pathogens within a single test and has the potential to return results within a few hours as opposed to days. As such, implementation of a DNA-based chip as a diagnostic tool is a timely and potentially impactful investigation.

Contributors

Agent

Created

Date Created
2016-12