Matching Items (16)
Filtering by

Clear all filters

134180-Thumbnail Image.png
Description
This creative project created and implemented a seven-day STEM curriculum that ultimately encouraged engagement in STEM subjects in students ages 5 through 11. The activities were incorporated into Arizona State University's Kids' Camp over the summer of 2017, every Tuesday afternoon from 4 to 6 p.m. with each activity running

This creative project created and implemented a seven-day STEM curriculum that ultimately encouraged engagement in STEM subjects in students ages 5 through 11. The activities were incorporated into Arizona State University's Kids' Camp over the summer of 2017, every Tuesday afternoon from 4 to 6 p.m. with each activity running for roughly 40 minutes. The lesson plans were created to cover a myriad of scientific topics to account for varied student interest. The topics covered were plant biology, aerodynamics, zoology, geology, chemistry, physics, and astronomy. Each lesson was scaffolded to match the learning needs of the three age groups (5-6 year olds, 7-8 year olds, 9-11 year olds) and to encourage engagement. "Engagement" was measured by pre- and post-activity surveys approved by IRB. The surveys were in the form of statements where the children would totally agree, agree, be undecided, disagree, or totally disagree with it. To more accurately test engagement, the smiley face Likert scale was incorporated with the answer choices. After implementation of the intervention, two-tailed paired t-tests showed that student engagement significantly increased for the two lesson plans of Aerodynamics and Chemistry.
ContributorsHunt, Allison Rene (Co-author) / Belko, Sara (Co-author) / Merritt, Eileen (Thesis director) / Ankeny, Casey (Committee member) / Division of Teacher Preparation (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
136567-Thumbnail Image.png
Description
This research investigates the whether dietary and nutritional treatments will improve some of the symptoms of autism. This treatment includes a combination of 6 nutritional and dietary treatments, which are vitamins/minerals, essential fatty acids, Epsom salts, carnitine, digestive enzymes, and healthy gluten-free, casein-free diet. 55 participants were involved in this

This research investigates the whether dietary and nutritional treatments will improve some of the symptoms of autism. This treatment includes a combination of 6 nutritional and dietary treatments, which are vitamins/minerals, essential fatty acids, Epsom salts, carnitine, digestive enzymes, and healthy gluten-free, casein-free diet. 55 participants were involved in this study; 28 participants are in the Treatment Group and 27 participants in the Delayed Group. Data from the PDD-BI form, the ADOS form, the CARS form and the professional SAS form will be used in this thesis project for analyses. Factors analyzed are age, gender and severity [initial professional SAS data] and then correlating these factors with data from PDD-BI (autism composite score and each subscale), ADOS and CARS. The data analyses show that changing the dietary and nutritional needs of children/adults with autism improves the symptoms of autism (as rated by the PDD-BI) by approximately 22% in the treatment group vs. 3% in the non-treatment group, p<0.001. Overall, these results also suggest that the treatment is equally beneficial for males and females of varying age (young children to adult) and of all severity levels.
ContributorsLee, Chiao May (Author) / Adams, James B. (Thesis director) / Pollard, Elena (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
135836-Thumbnail Image.png
Description
To supplement lectures, various resources are available to students; however, little research has been done to look systematically at which resources studies find most useful and the frequency at which they are used. We have conducted a preliminary study looking at various resources available in an introductory material science course

To supplement lectures, various resources are available to students; however, little research has been done to look systematically at which resources studies find most useful and the frequency at which they are used. We have conducted a preliminary study looking at various resources available in an introductory material science course over four semesters using a custom survey called the Student Resource Value Survey (SRVS). More specifically, the SRVS was administered before each test to determine which resources students use to do well on exams. Additionally, over the course of the semester, which resources students used changed. For instance, study resources for exams including the use of homework problems decreased from 81% to 50%, the utilization of teaching assistant for exam studying increased from 25% to 80%, the use of in class Muddiest Points for exam study increased form 28% to 70%, old exams and quizzes only slightly increased for exam study ranging from 78% to 87%, and the use of drop-in tutoring services provided to students at no charge decreased from 25% to 17%. The data suggest that students thought highly of peer interactions by using those resources more than tutoring centers. To date, no research has been completed looking at courses at the department level or a different discipline. To this end, we adapted the SRVS administered in material science to investigate resource use in thirteen biomedical engineering (BME) courses. Here, we assess the following research question: "From a variety of resources, which do biomedical engineering students feel addresses difficult concept areas, prepares them for examinations, and helps in computer-aided design (CAD) and programming the most and with what frequency?" The resources considered include teaching assistants, classroom notes, prior exams, homework problems, Muddiest Points, office hours, tutoring centers, group study, and the course textbook. Results varied across the four topical areas: exam study, difficult concept areas, CAD software, and math-based programming. When preparing for exams and struggling with a learning concept, the most used and useful resources were: 1) homework problems, 2) class notes and 3) group studying. When working on math-based programming (Matlab and Mathcad) as well as computer-aided design, the most used and useful resources were: 1) group studying, 2) engineering tutoring center, and 3) undergraduate teaching assistants. Concerning learning concepts and exams in the BME department, homework problems and class notes were considered some of the highest-ranking resources for both frequency and usefulness. When comparing to the pilot study in MSE, both BME and MSE students tend to highly favor peer mentors and old exams as a means of studying for exams at the end of the semester1. Because the MSE course only considered exams, we cannot make any comparisons to BME data concerning programming and CAD. This analysis has highlighted potential resources that are universally beneficial, such as the use of peer work, i.e. group studying, engineering tutoring center, and teaching assistants; however, we see differences by both discipline and topical area thereby highlighting the need to determine important resources on a class-by-class basis as well.
ContributorsMalkoc, Aldin (Author) / Ankeny, Casey (Thesis director) / Krause, Stephen (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137187-Thumbnail Image.png
Description
Diabetes is a growing epidemic in developing countries, specifically in rural Kenya. In addition to the high cost of glucose testing, many diabetics in Kenya do not understand the importance of testing their blood glucose, let alone the nature of the disease. This project addresses the insufficiency of educational materials

Diabetes is a growing epidemic in developing countries, specifically in rural Kenya. In addition to the high cost of glucose testing, many diabetics in Kenya do not understand the importance of testing their blood glucose, let alone the nature of the disease. This project addresses the insufficiency of educational materials regarding diabetes in rural Kenya. The resulting documents can easily be adjusted for use in other developing countries.
ContributorsBuchak, Jacqueline (Author) / Caplan, Michael (Thesis director) / Snyder, Jan (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
134416-Thumbnail Image.png
Description
Engineers have a strong influence on everyday lives, ranging from electronics and trains to chemicals and organs [1]. However, in the United States, there is a large knowledge gap in the roles of engineers, especially in K-12 students [2] [3]. The National Academy of Engineering (NAE) recognizes the current problems

Engineers have a strong influence on everyday lives, ranging from electronics and trains to chemicals and organs [1]. However, in the United States, there is a large knowledge gap in the roles of engineers, especially in K-12 students [2] [3]. The National Academy of Engineering (NAE) recognizes the current problems in engineering, such as the dominance of white males in the field and the amount of education needed to become a successful engineer [4]. Therefore, the NAE encourages that the current engineering community begin to expose the younger generations to the real foundation of engineering: problem-solving [4]. The objective of this thesis is to minimize the knowledge gap by assessing the current perception of engineering amongst middle school and high school students and improving it through engaging and interactive presentations and activities that build upon the students’ problem-solving abilities.

The project was aimed towards middle school and high school students, as this is the estimated level where they learn biology and chemistry—key subject material in biomedical engineering. The high school students were given presentations and activities related to biomedical engineering. Additionally, within classrooms, posters were presented to middle school students. The content of the posters were students of the biomedical engineering program at ASU, coming from different ethnic backgrounds to try and evoke within the middle school students a sense of their own identity as a biomedical engineer. To evaluate the impact these materials had on the students, a survey was distributed before the students’ exposure to the materials and after that assesses the students’ understanding of engineering at two different time points. A statistical analysis was conducted with Microsoft Excel to assess the influence of the activity and/or presentation on the students’ understanding of engineering.
ContributorsLlave, Alison Rose (Author) / Ganesh, Tirupalavanam (Thesis director) / Parker, Hope (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134753-Thumbnail Image.png
Description
This paper explores factors to study why the number of students in STEM are not as high as they could be. Based on both Veda and Soumya's personal experiences, factors were chosen to understand their impact on whether a high school student would choose a STEM major in their college

This paper explores factors to study why the number of students in STEM are not as high as they could be. Based on both Veda and Soumya's personal experiences, factors were chosen to understand their impact on whether a high school student would choose a STEM major in their college of choice, which could lead them to having a career in STEM. The factors explored will be location, grade level, school, parent/guardian involvement, teacher involvement, media influences, and personal interest. Data was collected through surveys sent to both high school and college students. The high school data came solely from schools in the Phoenix area, whereas college students' data came from across the world. These surveys contained questions regarding all of the above factors and were crafted so that we could gain further insight into each factor without producing bias. Each factor had at least one personal experience by either Veda or Soumya. Many of the survey responses gave insight to how and why a student would decide to pursue STEM or why they did pursue STEM. The main implications derived from the study are the following: the importance of a good support network, active parent/guardian and teacher involvement, and specifically active science teacher involvement. Data from both college and high school students showed that students highly valued a science teacher. One recommendation from this thesis is to provide a training for teachers to learn about how to connect concepts they teach to real-world applications. This can be administered through the district so that they may bring in anyone they feel is qualified to teach such topics such as industry professionals or teachers who specialize in teaching STEM. The last recommendation is for parents to participate in a workshop that will inform them of how to be more involved/engaged with their student.
ContributorsPushpraj, Soumya (Co-author) / Inamdar, Veda (Co-author) / Scott, Kimberly (Thesis director) / Escontrías, Gabriel (Committee member) / Department of Information Systems (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134697-Thumbnail Image.png
Description
This paper begins by exploring the prior research that has shown how eating a plant-based diet can affect the human body. Some of these effects include: improved mood, energy levels, gut health, alkalized urine pH, as well as, lowering the risk of hormonal imbalance, kidney stones, diabetes, cancer, and coronary

This paper begins by exploring the prior research that has shown how eating a plant-based diet can affect the human body. Some of these effects include: improved mood, energy levels, gut health, alkalized urine pH, as well as, lowering the risk of hormonal imbalance, kidney stones, diabetes, cancer, and coronary artery disease. The worries that generally accompany eating a fully vegan diet, which include, malnutrition and protein deficiency, are also addressed in the background research. In attempt to build upon previous research, a weeklong experiment was conducted testing 3 different factors, which include: gut health, improved mood, and urine pH. Mood states were measured quantifiably using a POMS (profile of mood states) test. Gut health was measured using several factors, including consistency and frequency of bowel movements, as well as, GI discomfort. Two 24-hour urine samples were collected from each of the subjects to compare the pH of their urine before and after the study. The sample size of this study included 15 healthy, non-smoking, subjects, between 18-30 years of age. The subjects were split up into 3 stratified random samples, including, an omnivore control group, vegan control group, and experimental vegan group. The experimental vegans had eaten meat/eggs/dairy regularly for their whole lives before the start of the study, and had consented to eating a vegan diet for the entirety of one week. While the data from the control groups remained mostly constant as predicted, the results from the experimental group were shown to have a significantly better mood (P<0.05) after one week, as well as, a significantly higher urine pH (P < 0.025) than they did before the study. However, the experimental group did not show a significant change in stool frequency, consistency, or GI discomfort within one week. The vegan control group, which included subjects who had eaten a plant-based diet for 1-3 years, had much better gut health scores. This leads us to believe that the vegan gut microbiome takes much longer to transform into than just one week unlike urine pH and mood, which can take as little as one week. These findings warrant further investigation.
ContributorsMacias, Lindsey Kaori (Author) / Johnston, Carol (Thesis director) / Katsanos, Christos (Committee member) / Harrington Bioengineering Program (Contributor) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134675-Thumbnail Image.png
Description
Concept mapping is a tool used in order to visually represent a person's understanding of interrelated concepts. Generally the central concept is in the center or at the top and the related concepts branch off, becoming more detailed as it continues. Additionally, links between different branches show how those concepts

Concept mapping is a tool used in order to visually represent a person's understanding of interrelated concepts. Generally the central concept is in the center or at the top and the related concepts branch off, becoming more detailed as it continues. Additionally, links between different branches show how those concepts are related to each other. Concept mapping can be implemented in many different types of classrooms because it can be easily adjusted for the needs of the teacher and class specifically. The goal of this project is to analyze both the attitude and achievement of students using concept mapping of college students in an active learning classroom. In order to evaluate the students' concept maps we will use the expert map scoring method, which compares the students concept maps to an expertly created concept map for similarities; the more similar the two maps are, the higher the score. We will collect and record students' scores on concept maps as they continue through the one semester class. Certain chapters correspond to specific exams due to the information contained in the lectures, chapters 1-4 correspond to exam 1 and so forth. We will use this information to correlate the average concept map score across these chapters to one exam score. There was no significant correlation found between the exam grades and the corresponding scores on the concept maps (Pearson's R values of 0.27, 0.26, and -0.082 for Exam 1, 2 and 3 respectively). According to Holm et all "it was found that 85% of students found interest or attainment in the concept mapping session, only 44% thought there was a cost, and 63% thought it would help them to be successful."
ContributorsFarrell, Carilee Dawn (Author) / Ankeny, Casey (Thesis director) / Middleton, James (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133028-Thumbnail Image.png
Description
Previous studies have found that the detection of near-threshold stimuli is decreased immediately before movement and throughout movement production. This has been suggested to occur through the use of the internal forward model processing an efferent copy of the motor command and creating a prediction that is used to cancel

Previous studies have found that the detection of near-threshold stimuli is decreased immediately before movement and throughout movement production. This has been suggested to occur through the use of the internal forward model processing an efferent copy of the motor command and creating a prediction that is used to cancel out the resulting sensory feedback. Currently, there are no published accounts of the perception of tactile signals for motor tasks and contexts related to the lips during both speech planning and production. In this study, we measured the responsiveness of the somatosensory system during speech planning using light electrical stimulation below the lower lip by comparing perception during mixed speaking and silent reading conditions. Participants were asked to judge whether a constant near-threshold electrical stimulation (subject-specific intensity, 85% detected at rest) was present during different time points relative to an initial visual cue. In the speaking condition, participants overtly produced target words shown on a computer monitor. In the reading condition, participants read the same target words silently to themselves without any movement or sound. We found that detection of the stimulus was attenuated during speaking conditions while remaining at a constant level close to the perceptual threshold throughout the silent reading condition. Perceptual modulation was most intense during speech production and showed some attenuation just prior to speech production during the planning period of speech. This demonstrates that there is a significant decrease in the responsiveness of the somatosensory system during speech production as well as milliseconds before speech is even produced which has implications for speech disorders such as stuttering and schizophrenia with pronounced deficits in the somatosensory system.
ContributorsMcguffin, Brianna Jean (Author) / Daliri, Ayoub (Thesis director) / Liss, Julie (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133493-Thumbnail Image.png
Description
One of the great difficulties in leading America to become a healthier nation involves overcoming the socioeconomic disparity that exists between income and health literacy. Impoverished communities consistently lack the proper health education to make quality food purchases and healthy lifestyle choices, leading to higher rates of obesity. Through FitPHX

One of the great difficulties in leading America to become a healthier nation involves overcoming the socioeconomic disparity that exists between income and health literacy. Impoverished communities consistently lack the proper health education to make quality food purchases and healthy lifestyle choices, leading to higher rates of obesity. Through FitPHX Energy Zones, an after-school program designed to encourage Phoenix youths to lead healthier lifestyles through an innovative use of library spaces, I provided health education and opportunities for physical activity for 8 to 14-year-olds in underserved Phoenix communities. However, although this intervention made significant progress with the kids' health literacy development over the course of the program, it is difficult for community-based intervention programs to continue in the long run due to budget or other extraneous circumstances. Once the program ends, there needed to be a way to continue to reach the kids beyond the scope of the program such that they can continue to experience the lessons taught during the program. Following the conclusion of FitPHX, I created an interactive book for the kids I worked with to help them retain the health and nutrition knowledge taught during the program.
ContributorsBejarano, Michael Carlos (Author) / McCoy, Maureen (Thesis director) / Williams, Deborah (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05