Matching Items (12)
Filtering by

Clear all filters

152025-Thumbnail Image.png
Description
At present, almost 70% of the electric energy in the United States is produced utilizing fossil fuels. Combustion of fossil fuels contributes CO2 to the atmosphere, potentially exacerbating the impact on global warming. To make the electric power system (EPS) more sustainable for the future, there has been an emphasis

At present, almost 70% of the electric energy in the United States is produced utilizing fossil fuels. Combustion of fossil fuels contributes CO2 to the atmosphere, potentially exacerbating the impact on global warming. To make the electric power system (EPS) more sustainable for the future, there has been an emphasis on scaling up generation of electric energy from wind and solar resources. These resources are renewable in nature and have pollution free operation. Various states in the US have set up different goals for achieving certain amount of electrical energy to be produced from renewable resources. The Southwestern region of the United States receives significant solar radiation throughout the year. High solar radiation makes concentrated solar power and solar PV the most suitable means of renewable energy production in this region. However, the majority of the projects that are presently being developed are either residential or utility owned solar PV plants. This research explores the impact of significant PV penetration on the steady state voltage profile of the electric power transmission system. This study also identifies the impact of PV penetration on the dynamic response of the transmission system such as rotor angle stability, frequency response and voltage response after a contingency. The light load case of spring 2010 and the peak load case of summer 2018 have been considered for analyzing the impact of PV. If the impact is found to be detrimental to the normal operation of the EPS, mitigation measures have been devised and presented in the thesis. Commercially available software tools/packages such as PSLF, PSS/E, DSA Tools have been used to analyze the power network and validate the results.
ContributorsPrakash, Nitin (Author) / Heydt, Gerald T. (Thesis advisor) / Vittal, Vijay (Thesis advisor) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
153496-Thumbnail Image.png
Description
An important operating aspect of all transmission systems is power system stability

and satisfactory dynamic performance. The integration of renewable resources in general, and photovoltaic resources in particular into the grid has created new engineering issues. A particularly problematic operating scenario occurs when conventional generation is operated at a low level

An important operating aspect of all transmission systems is power system stability

and satisfactory dynamic performance. The integration of renewable resources in general, and photovoltaic resources in particular into the grid has created new engineering issues. A particularly problematic operating scenario occurs when conventional generation is operated at a low level but photovoltaic solar generation is at a high level. Significant solar photovoltaic penetration as a renewable resource is becoming a reality in some electric power systems. In this thesis, special attention is given to photovoltaic generation in an actual electric power system: increased solar penetration has resulted in significant strides towards meeting renewable portfolio standards. The impact of solar generation integration on power system dynamics is studied and evaluated.

This thesis presents the impact of high solar penetration resulting in potentially

problematic low system damping operating conditions. This is the case because the power system damping provided by conventional generation may be insufficient due to reduced system inertia and change in power flow patterns affecting synchronizing and damping capability in the AC system. This typically occurs because conventional generators are rescheduled or shut down to allow for the increased solar production. This problematic case may occur at any time of the year but during the springtime months of March-May, when the system load is low and the ambient temperature is relatively low, there is the potential that over voltages may occur in the high voltage transmission system. Also, reduced damping in system response to disturbances may occur. An actual case study is considered in which real operating system data are used. Solutions to low damping cases are discussed and a solution based on the retuning of a conventional power system stabilizer is given in the thesis.
ContributorsPethe, Anushree Sanjeev (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald T (Thesis advisor) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2015
136314-Thumbnail Image.png
Description
The world of a hearing impaired person is much different than that of somebody capable of discerning different frequencies and magnitudes of sound waves via their ears. This is especially true when hearing impaired people play video games. In most video games, surround sound is fed through some sort of

The world of a hearing impaired person is much different than that of somebody capable of discerning different frequencies and magnitudes of sound waves via their ears. This is especially true when hearing impaired people play video games. In most video games, surround sound is fed through some sort of digital output to headphones or speakers. Based on this information, the gamer can discern where a particular stimulus is coming from and whether or not that is a threat to their wellbeing within the virtual world. People with reliable hearing have a distinct advantage over hearing impaired people in the fact that they can gather information not just from what is in front of them, but from every angle relative to the way they're facing. The purpose of this project was to find a way to even the playing field, so that a person hard of hearing could also receive the sensory feedback that any other person would get while playing video games To do this, visual surround sound was created. This is a system that takes a surround sound input, and illuminates LEDs around the periphery of glasses based on the direction, frequency and amplitude of the audio wave. This provides the user with crucial information on the whereabouts of different elements within the game. In this paper, the research and development of Visual Surround Sound is discussed along with its viability in regards to a deaf person's ability to learn the technology, and decipher the visual cues.
ContributorsKadi, Danyal (Co-author) / Burrell, Nathaneal (Co-author) / Butler, Kristi (Co-author) / Wright, Gavin (Co-author) / Kosut, Oliver (Thesis director) / Bliss, Daniel (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2015-05
133725-Thumbnail Image.png
Description
Detecting early signs of neurodegeneration is vital for measuring the efficacy of pharmaceuticals and planning treatments for neurological diseases. This is especially true for Amyotrophic Lateral Sclerosis (ALS) where differences in symptom onset can be indicative of the prognosis. Because it can be measured noninvasively, changes in speech production have

Detecting early signs of neurodegeneration is vital for measuring the efficacy of pharmaceuticals and planning treatments for neurological diseases. This is especially true for Amyotrophic Lateral Sclerosis (ALS) where differences in symptom onset can be indicative of the prognosis. Because it can be measured noninvasively, changes in speech production have been proposed as a promising indicator of neurological decline. However, speech changes are typically measured subjectively by a clinician. These perceptual ratings can vary widely between clinicians and within the same clinician on different patient visits, making clinical ratings less sensitive to subtle early indicators. In this paper, we propose an algorithm for the objective measurement of flutter, a quasi-sinusoidal modulation of fundamental frequency that manifests in the speech of some ALS patients. The algorithm detailed in this paper employs long-term average spectral analysis on the residual F0 track of a sustained phonation to detect the presence of flutter and is robust to longitudinal drifts in F0. The algorithm is evaluated on a longitudinal speech dataset of ALS patients at varying stages in their prognosis. Benchmarking with two stages of perceptual ratings provided by an expert speech pathologist indicate that the algorithm follows perceptual ratings with moderate accuracy and can objectively detect flutter in instances where the variability of the perceptual rating causes uncertainty.
ContributorsPeplinski, Jacob Scott (Author) / Berisha, Visar (Thesis director) / Liss, Julie (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134332-Thumbnail Image.png
Description
The Solar Powered Amphibious Transport (SPAT) is an amphibious hovercraft that uses solar energy as a power source and is fully controlled via iOS application on a phone or tablet. The hovercraft field is relatively unexplored with a solar power source, and one of the goals of the SPAT was

The Solar Powered Amphibious Transport (SPAT) is an amphibious hovercraft that uses solar energy as a power source and is fully controlled via iOS application on a phone or tablet. The hovercraft field is relatively unexplored with a solar power source, and one of the goals of the SPAT was to spark interest in sustainable hovercraft design. By challenging the potential of solar power, the SPAT proves that solar energy can be used in high power transportation applications. The second motive behind the creation a hovercraft was for it to serve as a disaster relief vehicle. A hovercraft can traverse both ground and water, which makes it ideal in flooded areas. With the SPAT being remote controlled it can allow the operator to stay at a safe distance while sending supplies or rescuing a person. The SPAT design covered multiple size options, however a small prototype version was built to serve as a proof of concept that a larger solar hovercraft is possible. Our analysis suggests that a larger craft will be able to carry more weight, and be more power efficient. A larger SPAT could help deliver supplies or rescue stranded people after a flood or hurricane. One issue faced however, was that many hovercrafts are highly expensive. The SPAT prototype was designed on a tight budget that did not exceed $800. The possibility of achieving this cost levels allows hovercraft to be a reasonable option for disaster relief agencies. After many long hours spent the SPAT became a fully operational remote control solar powered hovercraft.
ContributorsDavis, Parker William (Co-author) / Clenney, Jacob (Co-author) / Nachman, Michael (Co-author) / Melillo, Nick (Co-author) / Bertoni, Mariana (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
This is a lectures series on photovoltaics. As the need for electrical energy rises, mankind has struggled to meet its need in a reliable lasting way. Throughout this struggle, solar energy has come to the foreground as a complete solution. However, it has many drawbacks and needs a lot of

This is a lectures series on photovoltaics. As the need for electrical energy rises, mankind has struggled to meet its need in a reliable lasting way. Throughout this struggle, solar energy has come to the foreground as a complete solution. However, it has many drawbacks and needs a lot of development. In addition, the general public is unaware of how solar energy works, how it is made, and how it stands economically. This series of lectures answering those three questions.
ContributorsLeBeau, Edward Sanroma (Author) / Goryll, Michael (Thesis director) / Bowden, Stuart (Committee member) / Dauksher, Bill (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135937-Thumbnail Image.png
Description
With an abundance of sunshine, the state of Arizona has the potential for producing large amounts of solar energy. However, in recent years Arizona has also become the focal point in a political battle to determine the value and future of residential solar energy fees, which has critical implications for

With an abundance of sunshine, the state of Arizona has the potential for producing large amounts of solar energy. However, in recent years Arizona has also become the focal point in a political battle to determine the value and future of residential solar energy fees, which has critical implications for distributed generation. As the debate grows, it is clear that solar policies developed in Arizona will influence other state regulators regarding their solar rate structures and Net Energy Metering; however, there is a hindrance in the progress of this discussion due to the varying frameworks of the stakeholders involved. For this project, I set out to understand and analyze why the different stakeholders have such conflicting viewpoints. Some groups interpret energy as a financial and technological object while others view it is an inherently social and political issue. I conducted research in three manners: 1) I attended public meetings, 2) hosted interviews, and 3) analyzed reports and studies on the value of solar. By using the SRP 2015 Rate Case as my central study, I will discuss how these opposing viewpoints do or do not incorporate various forms of justice such as distributive, participatory, and recognition justice. In regards to the SRP Rate Case, I will look at both the utility- consumer relationship and the public meeting processes in which they interact, in addition to the pricing plans. This work reveals that antiquated utility structures and a lack of participation and recognition justice are hindering the creation of policy changes that satisfy both the needs of the utilities and the community at large.
ContributorsGidney, Jacob Robert (Author) / Richter, Jennifer (Thesis director) / Jurik, Nancy (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Economics (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135455-Thumbnail Image.png
Description
The increasing presence and affordability of sensors provides the opportunity to make novel and creative designs for underserved markets like the legally blind. Here we explore how mathematical methods and device coordination can be utilized to improve the functionality of inexpensive proximity sensing electronics in order to create designs that

The increasing presence and affordability of sensors provides the opportunity to make novel and creative designs for underserved markets like the legally blind. Here we explore how mathematical methods and device coordination can be utilized to improve the functionality of inexpensive proximity sensing electronics in order to create designs that are versatile, durable, low cost, and simple. Devices utilizing various acoustic and electromagnetic wave frequencies like ultrasonic rangefinders, radars, Lidar rangefinders, webcams, and infrared rangefinders and the concepts of Sensor Fusion, Frequency Modulated Continuous Wave radar, and Phased Arrays were explored. The effects of various factors on the propagation of different wave signals was also investigated. The devices selected to be incorporated into designs were the HB100 DRO Radar Doppler Sensor (as an FMCW radar), HC-SR04 Ultrasonic Sensor, and Maxbotix Ultrasonic Rangefinder \u2014 EZ3. Three designs were ultimately developed and dubbed the "Rad-Son Fusion", the "Tri-Beam Scanner", and the "Dual-Receiver Ranger". The "Rad-Son Fusion" employs the Sensor Fusion of an FMCW radar and Ultrasonic sensor through a weighted average of the distance reading from the two sensors. The "Tri-Beam Scanner" utilizes a beam-forming Digital Phased Array of ultrasonic sensors to scan its surroundings. The "Dual-Receiver Ranger" uses the convolved result from to two modified HC-SR04 sensors to determine the time of flight and ultimately an object's distance. After conducting hardware experiments to determine the feasibility of each design, the "Dual-Receiver Ranger" was prototyped and tested to demonstrate the potential of the concept. The designs were later compared based on proposed requirements and possible improvements and challenges associated with the designs are discussed.
ContributorsFeinglass, Joshua Forster (Author) / Goryll, Michael (Thesis director) / Reisslein, Martin (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
158716-Thumbnail Image.png
Description
The availability of data for monitoring and controlling the electrical grid has increased exponentially over the years in both resolution and quantity leaving a large data footprint. This dissertation is motivated by the need for equivalent representations of grid data in lower-dimensional feature spaces so that

The availability of data for monitoring and controlling the electrical grid has increased exponentially over the years in both resolution and quantity leaving a large data footprint. This dissertation is motivated by the need for equivalent representations of grid data in lower-dimensional feature spaces so that machine learning algorithms can be employed for a variety of purposes. To achieve that, without sacrificing the interpretation of the results, the dissertation leverages the physics behind power systems, well-known laws that underlie this man-made infrastructure, and the nature of the underlying stochastic phenomena that define the system operating conditions as the backbone for modeling data from the grid.

The first part of the dissertation introduces a new framework of graph signal processing (GSP) for the power grid, Grid-GSP, and applies it to voltage phasor measurements that characterize the overall system state of the power grid. Concepts from GSP are used in conjunction with known power system models in order to highlight the low-dimensional structure in data and present generative models for voltage phasors measurements. Applications such as identification of graphical communities, network inference, interpolation of missing data, detection of false data injection attacks and data compression are explored wherein Grid-GSP based generative models are used.

The second part of the dissertation develops a model for a joint statistical description of solar photo-voltaic (PV) power and the outdoor temperature which can lead to better management of power generation resources so that electricity demand such as air conditioning and supply from solar power are always matched in the face of stochasticity. The low-rank structure inherent in solar PV power data is used for forecasting and to detect partial-shading type of faults in solar panels.
ContributorsRamakrishna, Raksha (Author) / Scaglione, Anna (Thesis advisor) / Cochran, Douglas (Committee member) / Spanias, Andreas (Committee member) / Vittal, Vijay (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2020
132193-Thumbnail Image.png
Description
Power spectral analysis is a fundamental aspect of signal processing used in the detection and \\estimation of various signal features. Signals spaced closely in frequency are problematic and lead analysts to miss crucial details surrounding the data. The Capon and Bartlett methods are non-parametric filterbank approaches to power spectrum estimation.

Power spectral analysis is a fundamental aspect of signal processing used in the detection and \\estimation of various signal features. Signals spaced closely in frequency are problematic and lead analysts to miss crucial details surrounding the data. The Capon and Bartlett methods are non-parametric filterbank approaches to power spectrum estimation. The Capon algorithm is known as the "adaptive" approach to power spectrum estimation because its filter impulse responses are adapted to fit the characteristics of the data. The Bartlett method is known as the "conventional" approach to power spectrum estimation (PSE) and has a fixed deterministic filter. Both techniques rely on the Sample Covariance Matrix (SCM). The first objective of this project is to analyze the origins and characteristics of the Capon and Bartlett methods to understand their abilities to resolve signals closely spaced in frequency. Taking into consideration the Capon and Bartlett's reliance on the SCM, there is a novelty in combining these two algorithms using their cross-coherence. The second objective of this project is to analyze the performance of the Capon-Bartlett Cross Spectra. This study will involve Matlab simulations of known test cases and comparisons with approximate theoretical predictions.
ContributorsYoshiyama, Cassidy (Author) / Richmond, Christ (Thesis director) / Bliss, Daniel (Committee member) / Electrical Engineering Program (Contributor, Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05