Matching Items (6)
Filtering by

Clear all filters

153175-Thumbnail Image.png
Description
Sea ice algae dominated by diatoms inhabit the brine channels of the Arctic sea ice and serve as the base of the Arctic marine food web in the spring. I studied sea ice diatoms in the bottom 10 cm of first year land-fast sea ice off the coast of Barrow,

Sea ice algae dominated by diatoms inhabit the brine channels of the Arctic sea ice and serve as the base of the Arctic marine food web in the spring. I studied sea ice diatoms in the bottom 10 cm of first year land-fast sea ice off the coast of Barrow, AK, in spring of 2011, 2012, and 2013. I investigated the variability in the biomass and the community composition of these sea-ice diatoms between bloom phases, as a function of overlying snow depth and over time. The dominant genera were the pennate diatoms Nitzschia, Navicula, Thalassiothrix, and Fragilariopsis with only a minor contribution by centric diatoms. While diatom biomass as estimated by organic carbon changed significantly between early, peak, and declining bloom phases (average of 1.6 mg C L-1, 5.7 mg C L-1, and 1.0 mg C L-1, respectively), the relative ratio of the dominant diatom groups did not change. However, after export, when the diatoms melt out of the ice into the underlying water, diatom biomass dropped by ~73% and the diatom community shifted to one dominated by centric diatoms. I also found that diatom biomass was ~77% lower under high snow cover (>20 cm) compared to low snow cover (<8 cm); however, the ratio of the diatom categories relative to particulate organic carbon (POC) was again unchanged. The diatom biomass was significantly different between the three sampling years (average of 2.4 mg C L-1 in 2011, 1.1 mg C L-1 in 2012, and 5.4 mg C L-1 in 2013, respectively) as was the contribution of all of the dominant genera to POC. I hypothesize the latter to be due to differences in the history of ice sheet formation each year. The temporal variability of these algal communities will influence their availability for pelagic or benthic consumers. Furthermore, in an Arctic that is changing rapidly with earlier sea ice and snowmelt, this time series study will constitute an important baseline for further studies on how the changing Arctic influences the algal community immured in sea ice.
ContributorsKinzler, Kyle (Author) / Neuer, Susanne (Thesis advisor) / Juhl, Andrew (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2014
150078-Thumbnail Image.png
Description
In 2010, a monthly sampling regimen was established to examine ecological differences in Saguaro Lake and Lake Pleasant, two Central Arizona reservoirs. Lake Pleasant is relatively deep and clear, while Saguaro Lake is relatively shallow and turbid. Preliminary results indicated that phytoplankton biomass was greater by an order of magnitude

In 2010, a monthly sampling regimen was established to examine ecological differences in Saguaro Lake and Lake Pleasant, two Central Arizona reservoirs. Lake Pleasant is relatively deep and clear, while Saguaro Lake is relatively shallow and turbid. Preliminary results indicated that phytoplankton biomass was greater by an order of magnitude in Saguaro Lake, and that community structure differed. The purpose of this investigation was to determine why the reservoirs are different, and focused on physical characteristics of the water column, nutrient concentration, community structure of phytoplankton and zooplankton, and trophic cascades induced by fish populations. I formulated the following hypotheses: 1) Top-down control varies between the two reservoirs. The presence of piscivore fish in Lake Pleasant results in high grazer and low primary producer biomass through trophic cascades. Conversely, Saguaro Lake is controlled from the bottom-up. This hypothesis was tested through monthly analysis of zooplankton and phytoplankton communities in each reservoir. Analyses of the nutritional value of phytoplankton and DNA based molecular prey preference of zooplankton provided insight on trophic interactions between phytoplankton and zooplankton. Data from the Arizona Game and Fish Department (AZGFD) provided information on the fish communities of the two reservoirs. 2) Nutrient loads differ for each reservoir. Greater nutrient concentrations yield greater primary producer biomass; I hypothesize that Saguaro Lake is more eutrophic, while Lake Pleasant is more oligotrophic. Lake Pleasant had a larger zooplankton abundance and biomass, a larger piscivore fish community, and smaller phytoplankton abundance compared to Saguaro Lake. Thus, I conclude that Lake Pleasant was controlled top-down by the large piscivore fish population and Saguaro Lake was controlled from the bottom-up by the nutrient load in the reservoir. Hypothesis 2 stated that Saguaro Lake contains more nutrients than Lake Pleasant. However, Lake Pleasant had higher concentrations of dissolved nitrogen and phosphorus than Saguaro Lake. Additionally, an extended period of low dissolved N:P ratios in Saguaro Lake indicated N limitation, favoring dominance of N-fixing filamentous cyanobacteria in the phytoplankton community in that reservoir.
ContributorsSawyer, Tyler R (Author) / Neuer, Susanne (Thesis advisor) / Childers, Daniel L. (Committee member) / Sommerfeld, Milton (Committee member) / Arizona State University (Publisher)
Created2011
157372-Thumbnail Image.png
Description
Microscopic algae have been investigated extensively by researchers for decades for their ability to bioremediate wastewater and flue gas while producing valuable biomass for use as feed, fuel, fertilizer, nutraceutical, and other specialty products. Reports of the exciting commercial potential of this diverse group of organisms started appearing in

Microscopic algae have been investigated extensively by researchers for decades for their ability to bioremediate wastewater and flue gas while producing valuable biomass for use as feed, fuel, fertilizer, nutraceutical, and other specialty products. Reports of the exciting commercial potential of this diverse group of organisms started appearing in the literature as early as the 1940’s. However, nearly 80 years later, relatively few successful commercial microalgae installations exist and algae have not yet reached agricultural commodity status. This dissertation examines three major bottlenecks to commercial microalgae production including lack of an efficient and economical cultivation strategy, poor management of volatile waste nutrients, and costly harvesting and post processing strategies. A chapter is devoted to each of these three areas to gain a better understanding of each bottleneck as well as strategies for overcoming them.

The first chapter demonstrates the capability of two strains of Scenedesmus acutus to grow in ultra-high-density (>10 g L-1 dry weight biomass) cultures in flat panel photobioreactors for year-round production in the desert Southwest with record volumetric biomass productivity. The advantages and efficiency of high-density cultivation are discussed. The second chapter focuses on uptake and utilization of the volatile components of wastewater: ammonia and carbon dioxide. Scenedesmus acutus was cultured on wastewater from both municipal and agricultural origin and was shown to perform significantly better on flue gas as compared to commercial grade CO2 and just as well on waste nutrients as the commonly used BG-11 laboratory culture media, all while producing up to 50% lipids of the dry weight biomass suitable for use in biodiesel. The third chapter evaluates the feasibility of using gravity sedimentation for the harvesting of the difficult-to-separate Scenedesmus acutus green algae biomass followed by microfluidization to disrupt the cells. Lipid-extracted biomass was then studied as a fertilizer for plants and shown to have similar performance to a commercially available 4-6-6 fertilizer. Based on the work from these three chapters, a summary of modifications are suggested to help current and future microalgae companies be more competitive in the marketplace with traditional agricultural commodities.
ContributorsWray, Joshua (Author) / Dempster, Thomas (Thesis advisor) / Roberson, Robert (Thesis advisor) / Bingham, Scott (Committee member) / Neuer, Susanne (Committee member) / Arizona State University (Publisher)
Created2019
156495-Thumbnail Image.png
Description
Quagga mussels are an aquatic invasive species capable of causing economic and ecological damage. Despite the quagga mussels’ ability to rapidly spread, two watersheds, the Salt River system and the Verde River system of Arizona, both had no quagga mussel detections for 8 years. The main factor thought to deter

Quagga mussels are an aquatic invasive species capable of causing economic and ecological damage. Despite the quagga mussels’ ability to rapidly spread, two watersheds, the Salt River system and the Verde River system of Arizona, both had no quagga mussel detections for 8 years. The main factor thought to deter quagga mussels was the stratification of the two watersheds during the summer, resulting in high temperatures in the epilimnion and low dissolved oxygen in the hypolimnion. In 2015, Canyon Lake, a reservoir of the Salt River watershed, tested positive for quagga mussel veligers. In this study, I used Landsat 7 and Landsat 8 satellite data to determine if changes in the surface temperature have caused a change to the reservoir allowing quagga mussel contamination. I used a location in the center of the lake with a root mean squared error (RMSE) of 0.80 and a correlation coefficient (R^2) of 0.82, but I did not detect any significant variations in surface temperatures from recent years. I also measured 21 locations on Canyon Lake to determine if the locations in Canyon Lake were able to harbor quagga mussels. I found that summer stratification caused hypolimnion dissolved oxygen levels to drop well below the quagga mussel threshold of 2mg/L. Surface temperatures, however were not high enough throughout the lake to prevent quagga mussels from inhabiting the epilimnion. It is likely that a lack of substrate in the epilimnion have forced any quagga mussel inhabitants in Canyon Lake to specific locations that were not necessarily near the point of quagga veliger detection sampling. The research suggests that while Canyon Lake may have been difficult for quagga mussels to infest, once they become established in the proper locations, where they can survive through the summer, quagga mussels are likely to become more prevalent.
ContributorsLau, Theresa (Author) / Fox, Peter (Thesis advisor) / Neuer, Susanne (Committee member) / Abbaszadegan, Morteza (Committee member) / Arizona State University (Publisher)
Created2018
156753-Thumbnail Image.png
Description
Safe, readily available, and reliable sources of water are an essential component of any municipality’s infrastructure. Phoenix, Arizona, a southwestern city, has among the highest per capita water use in the United States, making it essential to carefully manage its reservoirs. Generally, municipal water bodies are monitored through field sampling.

Safe, readily available, and reliable sources of water are an essential component of any municipality’s infrastructure. Phoenix, Arizona, a southwestern city, has among the highest per capita water use in the United States, making it essential to carefully manage its reservoirs. Generally, municipal water bodies are monitored through field sampling. However, this approach is limited spatially and temporally in addition to being costly. In this study, the application of remotely sensed reflectance data from Landsat 7’s Enhanced Thematic Mapper Plus (ETM+) and Landsat 8’s Operational Land Imager (OLI) along with data generated through field-sampling is used to gain a better understanding of the seasonal development of algal communities and levels of suspended particulates in the three main terminal reservoirs supplying water to the Phoenix metro area: Bartlett Lake, Lake Pleasant, and Saguaro Lake. Algal abundances, particularly the abundance of filamentous cyanobacteria, increased with warmer temperatures in all three reservoirs and reached the highest comparative abundance in Bartlett Lake. Prymnesiophytes (the class of algae to which the toxin-producing golden algae belong) tended to peak between June and August, with one notable peak occurring in Saguaro Lake in August 2017 during which time a fish-kill was observed. In the cooler months algal abundance was comparatively lower in all three lakes, with a more even distribution of abundance across algae classes. In-situ data from March 2017 to March 2018 were compared with algal communities sampled approximately ten years ago in each reservoir to understand any possible long-term changes. The findings show that the algal communities in the reservoirs are relatively stable, particularly those of the filamentous cyanobacteria, chlorophytes, and prymnesiophytes with some notable exceptions, such as the abundance of diatoms, which increased in Bartlett Lake and Lake Pleasant. When in-situ data were compared with Landsat-derived reflectance data, two-band combinations were found to be the best-estimators of chlorophyll-a concentration (as a proxy for algal biomass) and total suspended sediment concentration. The ratio of the reflectance value of the red band and the blue band produced reasonable estimates for the in-situ parameters in Bartlett Lake. The ratio of the reflectance value of the green band and the blue band produced reasonable estimates for the in-situ parameters in Saguaro Lake. However, even the best performing two-band algorithm did not produce any significant correlation between reflectance and in-situ data in Lake Pleasant. Overall, remotely-sensed observations can significantly improve our understanding of the water quality as measured by algae abundance and particulate loading in Arizona Reservoirs, especially when applied over long timescales.
ContributorsRussell, Jazmine Barkley (Author) / Neuer, Susanne (Thesis advisor) / Fox, Peter (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2018
132148-Thumbnail Image.png
Description
Coral reefs are diverse marine ecosystems, where reef building corals provide both the structure of the habitat as well as the primary production through their symbiotic algae, and alongside algae living on the reef itself, are the basis of the food web of the reef. In this way, coral reefs

Coral reefs are diverse marine ecosystems, where reef building corals provide both the structure of the habitat as well as the primary production through their symbiotic algae, and alongside algae living on the reef itself, are the basis of the food web of the reef. In this way, coral reefs are the ocean's "forests" and are estimated to support 25% of all marine species. However, due to the large size of a coral reef, the relative inaccessibility and the reliance on in situ surveying methods, our current understanding of reefs is spatially limited. Understanding coral reefs from a more spatially complete perspective will offer insight into the ecological factors that contribute to coral reef vitality. This has become a priority in recent years due to the rapid decline of coral reefs caused by mass bleaching. Despite this urgency, being able to assess the entirety of a coral reef is physically difficult and this obstacle has not yet been overcome. However, similar difficulties have been addressed in terrestrial ecosystems by using remote sensing methods, which apply hyperspectral imaging to assess large areas of primary producers at high spatial resolutions. Adapting this method of remote spectral sensing to assess coral reefs has been suggested, but in order to quantify primary production via hyper spectral imaging, light-use efficiencies (LUEs) of coral reef communities need to be known. LUEs are estimations of the rate of carbon fixation compared to incident absorbed light. Here, I experimentally determine LUEs and report on several parameters related to LUE, namely net productivity, respiration, and light absorbance for the main primary producers in coral reefs surrounding Bermuda, which consist of algae and coral communities. The derived LUE values fall within typical ranges for LUEs of terrestrial ecosystems, with LUE values for coral averaging 0.022 ± 0.002 mol O2 mol photons-1 day-1 at a water flow rate of 17.5 ± 2 cm s^(-1) and 0.049 ± 0.011 mol O2 mol photons-1 day-1 at a flow rate of 32 ± 4 cm s^(-1) LUE values for algae averaged 0.0335 ± 0.0048 mol O2 mol photons-1 day-1 at a flow rate of 17.5 ± 2 cm s^(-1). These values allow insight into coral reef productivity and opens the door for future remote sensing applications.
ContributorsFlesher, David A (Author) / Neuer, Susanne (Thesis director) / Redding, Kevin (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05