Matching Items (2)
Filtering by

Clear all filters

150192-Thumbnail Image.png
Description
In recent years environmental life-cycle assessments (LCA) have been increasingly used to support planning and development of sustainable infrastructure. This study demonstrates the application of LCA to estimate embedded energy use and greenhouse gas (GHG) emissions related to materials manufacturing and construction processes for low and high density single-family neighborhoods

In recent years environmental life-cycle assessments (LCA) have been increasingly used to support planning and development of sustainable infrastructure. This study demonstrates the application of LCA to estimate embedded energy use and greenhouse gas (GHG) emissions related to materials manufacturing and construction processes for low and high density single-family neighborhoods typically found in the Southwest. The LCA analysis presented in this study includes the assessment of more than 8,500 single family detached units, and 130 miles of related roadway infrastructure. The study estimates embedded and GHG emissions as a function of building size (1,500 - 3000 square feet), number of stories (1 or 2), and exterior wall material composition (stucco, brick, block, wood), roof material composition (clay tile, cement tile, asphalt shingles, built up), and as a function of roadway typology per mile (asphalt local residential roads, collectors, arterials). While a hybrid economic input-out life-cycle assessment is applied to estimate the energy and GHG emissions impacts of the residential units, the PaLATE tool is applied to determine the environmental effects of pavements and roads. The results indicate that low density single family neighborhoods are 2 - 2.5 X more energy and GHG intensive, per residential dwelling (unit) built, than high density residential neighborhoods. This relationship holds regardless of whether the functional unit is per acre or per capita. The results also indicate that a typical low density neighborhood (less than 2 dwellings per acre) requires 78 percent more energy and resource in roadway infrastructure per residential unit than a traditional small lot high density (more than 6 dwelling per acre). Also, this study shows that new master planned communities tend to be more energy intensive than traditional non master planned residential developments.
ContributorsFrijia, Stephane (Author) / Guhathakurta, Subhrajit (Committee member) / Williams, Eric D. (Committee member) / Pijawka, David K (Committee member) / Arizona State University (Publisher)
Created2011
Description

Sonoma County, CA is on an ambitious pathway to meeting stringent carbon emissions goals that are part of California Assembly Bill 32. At the county-level, climate planners are currently evaluating options to assist residents of the county in reducing their carbon footprint and also for saving money. The Sonoma County

Sonoma County, CA is on an ambitious pathway to meeting stringent carbon emissions goals that are part of California Assembly Bill 32. At the county-level, climate planners are currently evaluating options to assist residents of the county in reducing their carbon footprint and also for saving money. The Sonoma County Energy Independence Program (SCEIP) is one such county-level measure that is currently underway. SCEIP is a revolving loan fund that eligible residents may utilize to install distributed solar energy on their property. The fund operates like a property tax assessment, except that it only remains for a period of 20 years rather than in perpetuity.

This analysis intends to estimate the potential countywide effect that the $100M SCEIP fund might achieve on the C02 and cost footprint for the residential building energy sector. A functional unit of one typical home in the county is selected for a 25 year analysis period. Outside source data for the lifecycle emissions generated by the production, installation and operations of a PV system are utilized. Recent home energy survey data for the region is also utilized to predict a “typical” system size and profile that might be funded by the SCEIP program. A marginal cost-benefit calculation is employed to determine what size solar system a typical resident might purchase, which drives the life cycle assessment of the functional unit. Next, the total number of homes that might be financed by the SCEIP bond is determined in order to forecast the potential totalized effect on the County’s lifecycle emissions and cost profile.

The final results are evaluated and it is determined that the analysis is likely conservative in its estimation of the effects of the SCEIP program. This is due to the fact that currently offered subsidies are not utilized in the marginal benefit calculation for the solar system but do exist, the efficiency of solar technology is increasing, and the cost of a system over its lifecycle is currently decreasing. The final results show that financing distributed solar energy systems using Sonoma County money is a viable option for helping to meet state mandated goals and should be further pursued.

Created2012-05