Matching Items (5)
Filtering by

Clear all filters

152721-Thumbnail Image.png
Description
In vitro, or cultured, meat refers to edible skeletal muscle and fat tissue grown from animal stem cells in a laboratory or factory. It is essentially meat that does not require an animal to be killed. Although it is still in the research phase of development, claims of its potential

In vitro, or cultured, meat refers to edible skeletal muscle and fat tissue grown from animal stem cells in a laboratory or factory. It is essentially meat that does not require an animal to be killed. Although it is still in the research phase of development, claims of its potential benefits range from reducing the environmental impacts of food production to improving human health. However, technologies powerful enough to address such significant challenges often come with unintended consequences and a host of costs and benefits that seldom accrue to the same actors. In extreme cases, they can even be destabilizing to social, institutional, economic, and cultural systems. This investigation explores the sustainability implications of cultured meat before commercial facilities are established, unintended consequences are realized, and undesirable effects become reified and locked in. The study utilizes expert focus groups to explore the social implications, life cycle analysis to project the environmental implications, and economic input-output assessment to explore tradeoffs between conventionally-produced meat and factory-grown food products. The results suggest that, should cultured meat be widely adopted by consumers, food is likely to be increasingly a product of human design, perhaps becoming integrated into existing human institutions such as health care delivery and education. Environmentally, cultured meat could require smaller quantities of agricultural inputs and land than livestock. However, those avoided costs could come at the expense of more intensive energy use as biological processes are replaced with industrial systems. Finally, the research found that, since livestock production is a driver of significant economic activity, shifting away from traditional meat production in favor of cultured meat production could result in a net economic contraction.
ContributorsMattick, Carolyn Sue (Author) / Allenby, Braden R. (Thesis advisor) / Landis, Amy E. (Committee member) / Wetmore, Jameson M. (Committee member) / Arizona State University (Publisher)
Created2014
153951-Thumbnail Image.png
Description
Engineering education can provide students with the tools to address complex, multidisciplinary grand challenge problems in sustainable and global contexts. However, engineering education faces several challenges, including low diversity percentages, high attrition rates, and the need to better engage and prepare students for the role of a modern engineer. These

Engineering education can provide students with the tools to address complex, multidisciplinary grand challenge problems in sustainable and global contexts. However, engineering education faces several challenges, including low diversity percentages, high attrition rates, and the need to better engage and prepare students for the role of a modern engineer. These challenges can be addressed by integrating sustainability grand challenges into engineering curriculum.

Two main strategies have emerged for integrating sustainability grand challenges. In the stand-alone course method, engineering programs establish one or two distinct courses that address sustainability grand challenges in depth. In the module method, engineering programs integrate sustainability grand challenges throughout existing courses. Neither method has been assessed in the literature.

This thesis aimed to develop sustainability modules, to create methods for evaluating the modules’ effectiveness on student cognitive and affective outcomes, to create methods for evaluating students’ cumulative sustainability knowledge, and to evaluate the stand-alone course method to integrate sustainability grand challenges into engineering curricula via active and experiential learning.

The Sustainable Metrics Module for teaching sustainability concepts and engaging and motivating diverse sets of students revealed that the activity portion of the module had the greatest impact on learning outcome retention.

The Game Design Module addressed methods for assessing student mastery of course content with student-developed games indicated that using board game design improved student performance and increased student satisfaction.

Evaluation of senior design capstone projects via novel comprehensive rubric to assess sustainability learned over students’ curriculum revealed that students’ performance is primarily driven by their instructor’s expectations. The rubric provided a universal tool for assessing students’ sustainability knowledge and could also be applied to sustainability-focused projects.

With this in mind, engineering educators should pursue modules that connect sustainability grand challenges to engineering concepts, because student performance improves and students report higher satisfaction. Instructors should utilize pedagogies that engage diverse students and impact concept retention, such as active and experiential learning. When evaluating the impact of sustainability in the curriculum, innovative assessment methods should be employed to understand student mastery and application of course concepts and the impacts that topics and experiences have on student satisfaction.
ContributorsAntaya, Claire Louise (Author) / Landis, Amy E. (Thesis advisor) / Parrish, Kristen (Thesis advisor) / Bilec, Melissa M (Committee member) / Besterfield-Sacre, Mary E (Committee member) / Allenby, Braden R. (Committee member) / Arizona State University (Publisher)
Created2015
135900-Thumbnail Image.png
Description
As the demand for natural resources increases with population growth, importance has been placed on environmental issues due to increasing pressure on land, water, air, and raw materials. In order to sustain the environment and natural resources, sustainable engineering and earth systems engineering and management (ESEM) is vital for future

As the demand for natural resources increases with population growth, importance has been placed on environmental issues due to increasing pressure on land, water, air, and raw materials. In order to sustain the environment and natural resources, sustainable engineering and earth systems engineering and management (ESEM) is vital for future populations. The Aral Sea and the Florida Everglades are both regions that are heavily impacted by human design decisions. Comparing and analyzing the implications and outcomes of these human design decisions allows conclusions to be made regarding how earth systems engineering and management can be best accomplished. The Aral Sea, located in central Asia between Kazakhstan and Uzbekistan, is a case study of an ecosystem that has collapsed under the pressure of agricultural expansion. This has caused extensive economic, health, agricultural, and environmental impacts. The Everglades in southern Florida is a case study where the ecosystem has evolved from its original state, rather than collapsed, due to human settlement and water resource demand. In order to determine effective sustainable engineering approaches, the case studies will be evaluated using ESEM principles. These principles are used as guidance in executing better practice of sustainable engineering. When comparing the two case studies, it appears that the Everglades is an adequate representation of effective ESEM approaches, while the Aral Sea is not reflective of effective approaches. When practicing ESEM, it is critical that the principles be applied as a whole rather than individually. While the ESEM principles do not guarantee success, they offer an effective guide to dealing with the complexity and uncertainty in many of today's systems.
ContributorsRidley, Brooke Nicole (Author) / Allenby, Brad (Thesis director) / Parrish, Kristen (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
Description

In his writings over the past decade, Brad Allenby has proposed (at least) 16 principles of sustainable engineering (see references) that are collectively known as the Earth Systems Engineering and Management (ESEM) principles. These principles have merit and applicability in many disciplines and domains of discourse, but are sometimes awkward

In his writings over the past decade, Brad Allenby has proposed (at least) 16 principles of sustainable engineering (see references) that are collectively known as the Earth Systems Engineering and Management (ESEM) principles. These principles have merit and applicability in many disciplines and domains of discourse, but are sometimes awkward to use due to the quantity of words required to accurately express their meaning. In light of this, it has become necessary to formulate a simplified list of “abbreviated tags” for ease of reference in conversation and concise writing. This list of tags also makes the principles immediately accessible to those who may want to pursue the more thorough definitions offered by Allenby. The following tags have been proposed for use when a concise phrasing is required. The citation provided after the tag is, in my opinion, the most complete expression of Allenby’s thought on this principle. It can be used when citing the principle in written assignments or publications.

Created2011-05-20
157639-Thumbnail Image.png
Description
Sustainable food systems have been studied extensively in recent times and the Food-Energy-Water (FEW) nexus framework has been one of the most common frameworks used. The dissertation intends to examine and quantitatively model the food system interaction with the energy system and the water system. Traditional FEW nexus studies have

Sustainable food systems have been studied extensively in recent times and the Food-Energy-Water (FEW) nexus framework has been one of the most common frameworks used. The dissertation intends to examine and quantitatively model the food system interaction with the energy system and the water system. Traditional FEW nexus studies have focused on food production alone. While this approach is informative, it is insufficient since food is extensively traded. Various food miles studies have highlighted the extensive virtual energy and virtual water footprint of food. This highlights the need for transport, and storage needs to be considered as part of the FEW framework. The Life cycle assessment (LCA) framework is the best available option to estimate the net energy and water exchange between the food, energy, and water systems. Climate plays an important role in food production as well as food preservation. Crops are very sensitive to temperature changes and it directly impacts a crop’s productivity. Changing temperatures directly impact crop productivity, and water demand. It is important to explore the feasibility of mitigation measures to keep in check increasing agricultural water demands. Conservation technologies may be able to provide the necessary energy and water savings. Even under varying climates it might be possible to meet demand for food through trade. The complex trade network might have the capacity to compensate for the produce lost due to climate change, and hence needs to be established. Re-visualizing the FEW nexus from the consumption perspective would better inform policy on exchange of constrained resources as well as carbon footprints. This puts the FEW nexus research space a step towards recreating the FEW nexus as a network of networks, that is, FEW-e (FEW exchange) nexus.
ContributorsNatarajan, Mukunth (Author) / Chester, Mikhail (Thesis advisor) / Lobo, Jose (Committee member) / Ruddell, Benjamin (Committee member) / Fraser, Andrew (Committee member) / Arizona State University (Publisher)
Created2019