Matching Items (3)
Filtering by

Clear all filters

156469-Thumbnail Image.png
Description
The 21st-century professional or knowledge worker spends much of the working day engaging others through electronic communication. The modes of communication available to knowledge workers have rapidly increased due to computerized technology advances: conference and video calls, instant messaging, e-mail, social media, podcasts, audio books, webinars, and much more. Professionals

The 21st-century professional or knowledge worker spends much of the working day engaging others through electronic communication. The modes of communication available to knowledge workers have rapidly increased due to computerized technology advances: conference and video calls, instant messaging, e-mail, social media, podcasts, audio books, webinars, and much more. Professionals who think for a living express feelings of stress about their ability to respond and fear missing critical tasks or information as they attempt to wade through all the electronic communication that floods their inboxes. Although many electronic communication tools compete for the attention of the contemporary knowledge worker, most professionals use an electronic personal information management (PIM) system, more commonly known as an e-mail application and often the ubiquitous Microsoft Outlook program. The aim of this research was to provide knowledge workers with solutions to manage the influx of electronic communication that arrives daily by studying the workers in their working environment. This dissertation represents a quest to understand the current strategies knowledge workers use to manage their e-mail, and if modification of e-mail management strategies can have an impact on productivity and stress levels for these professionals. Today’s knowledge workers rarely work entirely alone, justifying the importance of also exploring methods to improve electronic communications within teams.
ContributorsCounts, Virginia (Author) / Parrish, Kristen (Thesis advisor) / Allenby, Braden (Thesis advisor) / Landis, Amy (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2018
158700-Thumbnail Image.png
Description
The International Energy Agency (IEA) anticipates the global energy demand to grow by more than 25% by 2040, requiring more than $2 trillion a year of investment in new energy supply (IEA, 2018). With power needs increasing as populations grow and climate extremes become more routine, power companies seek to

The International Energy Agency (IEA) anticipates the global energy demand to grow by more than 25% by 2040, requiring more than $2 trillion a year of investment in new energy supply (IEA, 2018). With power needs increasing as populations grow and climate extremes become more routine, power companies seek to continually increase capacity, improve efficiency, and provide resilience to the power grid, such that they can meet the energy needs of the societies they serve, often while trying to minimize their carbon emissions. Despite significant research dedicated to planning for industrial projects, including power generation projects as well as the pipeline projects that enable power generation and distribute power, there are still endemic cost overruns and schedule delays in large scale power generation projects. This research explores root causes of these seemingly systemic project performance issues that plague power generation projects. Specifically, this work analyzes approximately 770 power and pipeline projects and identifies how project performance indicators (i.e., cost and schedule performance) as well as planning indicators, compare in two regulatory environments, namely nonregulated and regulated markets. This contributes explicit understanding of the relationship between project performance and regulatory environment, both quantitatively and qualitatively, to the pipeline and power project planning and construction bodies of knowledge. Following an understanding of nonregulated versus regulated markets, this research takes a deeper dive into one highly-regulated power sector, the nuclear power sector, and explores root causes for cost overruns and schedule delays. This work leverages gray literature (i.e., newspaper articles) as sources, in order to analyze projects individually (most academic literature presents data about an aggregated set of projects) and understand the public perception of risks associated with such projects. This work contributes an understanding of the risks associated with nuclear power plant construction to the nuclear power plant construction body of knowledge. Ultimately, the findings from this research support improved planning for power and pipeline projects, in turn leading to more predictable projects, in terms of cost and schedule performance, regardless of regulatory environment. This enables power providers to meet the capacity demands of a growing population within budget and schedule.
ContributorsSherman, Rachael Paige (Author) / Parrish, Kristen (Thesis advisor) / Gibson Jr., G. Edward (Committee member) / Lamanna, Anthony (Committee member) / Arizona State University (Publisher)
Created2020
153880-Thumbnail Image.png
Description
Project teams expend substantial effort to develop scope definition during the front end planning phase of large, complex projects, but oftentimes neglect to sufficiently plan for small projects. An industry survey administered by the author showed that small projects make up 70-90 percent (by count) of all projects in the

Project teams expend substantial effort to develop scope definition during the front end planning phase of large, complex projects, but oftentimes neglect to sufficiently plan for small projects. An industry survey administered by the author showed that small projects make up 70-90 percent (by count) of all projects in the industrial construction sector, the planning of these project varies greatly, and that a consistent definition of “small industrial project” did not exist. This dissertation summarizes the motivations and efforts to develop a non-proprietary front end planning tool specifically for small industrial projects, namely the Project Definition Rating Index (PDRI) for Small Industrial Projects. The author was a member of Construction Industry Institute (CII) Research Team 314, who was tasked with developing the tool in May of 2013. The author, together with the research team, reviewed, scrutinized and adapted an existing industrial-focused FEP tool, the PDRI for Industrial Projects, and other resources to develop a set of 41 specific elements relevant to the planning of small industrial projects. The author supported the facilitation of five separate industry workshops where 65 industry professionals evaluated the element descriptions, and provided element prioritization data that was statistically analyzed and used to develop a weighted score sheet that corresponds to the element descriptions. The tool was tested on 54 completed and in-progress projects, the author’s analysis of which showed that small industrial projects with greater scope definition (based on the tool’s scoring scheme) outperformed projects with lesser scope definition regarding cost performance, schedule performance, change performance, financial performance, and customer satisfaction. Moreover, the author found that users of the tool on in-progress projects overwhelmingly agreed that the tool added value to their projects in a timeframe and manner consistent with their needs, and that they would continue using the tool in the future. The author also developed an index-based selection guide to aid PDRI users in choosing the appropriate tool for use on an industrial project based on distinguishing project size with indicators of project complexity. The final results of the author’s research provide several contributions to the front end planning, small projects, and project complexity bodies of knowledge.
ContributorsCollins, Wesley A (Author) / Parrish, Kristen (Thesis advisor) / Gibson, Jr., G. Edward (Committee member) / El Asmar, Mounir (Committee member) / Arizona State University (Publisher)
Created2015