Matching Items (9)

Life Cycle Costing Assessment: A Building Information Model (BIM) Investment Evaluation for General Contractors in the Construction Industry

Description

In the construction industry, the management of knowledge is becoming an increasingly important element for success. The successful management of knowledge helps general contractors to better compete which ultimately leads to

In the construction industry, the management of knowledge is becoming an increasingly important element for success. The successful management of knowledge helps general contractors to better compete which ultimately leads to more contracts and potentially greater prots. The Life Cycle Costing assessment presented here is a small step in understanding the complex decision of investing in BIM from general contractor's perspective. This assessment has identified the cost components for BIM and has allocated the cost for a typical project.

Contributors

Created

Date Created
  • 2013-05

154578-Thumbnail Image.png

Building energy modeling: a data-driven approach

Description

Buildings consume nearly 50% of the total energy in the United States, which drives the need to develop high-fidelity models for building energy systems. Extensive methods and techniques have been

Buildings consume nearly 50% of the total energy in the United States, which drives the need to develop high-fidelity models for building energy systems. Extensive methods and techniques have been developed, studied, and applied to building energy simulation and forecasting, while most of work have focused on developing dedicated modeling approach for generic buildings. In this study, an integrated computationally efficient and high-fidelity building energy modeling framework is proposed, with the concentration on developing a generalized modeling approach for various types of buildings. First, a number of data-driven simulation models are reviewed and assessed on various types of computationally expensive simulation problems. Motivated by the conclusion that no model outperforms others if amortized over diverse problems, a meta-learning based recommendation system for data-driven simulation modeling is proposed. To test the feasibility of the proposed framework on the building energy system, an extended application of the recommendation system for short-term building energy forecasting is deployed on various buildings. Finally, Kalman filter-based data fusion technique is incorporated into the building recommendation system for on-line energy forecasting. Data fusion enables model calibration to update the state estimation in real-time, which filters out the noise and renders more accurate energy forecast. The framework is composed of two modules: off-line model recommendation module and on-line model calibration module. Specifically, the off-line model recommendation module includes 6 widely used data-driven simulation models, which are ranked by meta-learning recommendation system for off-line energy modeling on a given building scenario. Only a selective set of building physical and operational characteristic features is needed to complete the recommendation task. The on-line calibration module effectively addresses system uncertainties, where data fusion on off-line model is applied based on system identification and Kalman filtering methods. The developed data-driven modeling framework is validated on various genres of buildings, and the experimental results demonstrate desired performance on building energy forecasting in terms of accuracy and computational efficiency. The framework could be easily implemented into building energy model predictive control (MPC), demand response (DR) analysis and real-time operation decision support systems.

Contributors

Agent

Created

Date Created
  • 2016

154362-Thumbnail Image.png

Workflow management using Building Information Modeling (BIM) for prefabrication in a construction retrofit environment

Description

The semiconductor manufacturing business model provides unique challenges for the design and construction of supporting fabrication facilities. To accommodate the latest semiconductor processes and technologies, manufacturing facilities are constantly re-tooled and upgraded. Common to

The semiconductor manufacturing business model provides unique challenges for the design and construction of supporting fabrication facilities. To accommodate the latest semiconductor processes and technologies, manufacturing facilities are constantly re-tooled and upgraded. Common to this sector of construction is the retrofit project environment. This type of construction project introduces a multitude of existing conditions constraints and functions entirely differently than traditional new-build projects. This facility conversion process is further constrained by owner needs for continuous manufacturing operations and a compressed design/construction schedule to meet first-to-market milestones.

To better control the variables within this project environment, Building Information Modeling (BIM) workflows are being explored and introduced into this project typology. The construction supply-chain has also increased their focus on offsite construction techniques to prefabricate components in a controlled environment. The goal is to overlap construction timelines and improve the productivity of workers to meet the increasingly demanding schedules and to reduce on-site congestion. Limited studies exist with regards to the manufacturing retrofit construction environment, particularly when focusing on the effectiveness of BIM and prefabrication workflows. This study fills the gap by studying labor time utilization rates for Building Information Modeling workflows for prefabrication of MEP (mechanical/electrical/plumbing) and process piping equipment in a retrofit construction environment.

A semiconductor manufacturing facility serves as a case-study for this research in which the current state process for utilizing BIM for prefabrication is mapped and analyzed. Labor time utilization is studied through direct observation in relation to the current state modeling process. Qualitative analysis of workflows and quantitative analysis of labor time utilization rates provide workflow interventions which are implemented and compared against the current state modeling process.

This research utilizes a mixed-method approach to explore the hypothesis that reliable/trusted geometry is the most important component for successful implementation of a BIM for prefabrication workflow in a retrofit environment. The end product of this research is the development of a prefaBIM framework for the introduction of a dynamic modeling process for retrofit prefabrication which forms the basis for a model-based delivery system for retrofit prefabrication.

Contributors

Agent

Created

Date Created
  • 2016

155645-Thumbnail Image.png

Assessing the impact of BIM process mapping activities in construction education

Description

This research focuses on assessing the impact of various process mapping activities aimed at improving students' abilities to plan for Building Information Modeling (BIM). During the various educational activities, students

This research focuses on assessing the impact of various process mapping activities aimed at improving students' abilities to plan for Building Information Modeling (BIM). During the various educational activities, students were tasked with generating process maps to illustrate plans for hypothetical construction projects. Several different educational approaches for developing process maps were used, beginning in the Fall 2015 semester. In all iterations of the learning activity, students were asked to create level 1 (project-specific) and level 2 (BIM use-specific) process maps based on a previously published BIM Project Execution Planning Guide. In Fall 2015, a peer review activity was conducted. In Spring 2016, a collaborative activity was conducted. Beginning in the Fall 2016 and Spring 2017 semesters, an additional process mapping activity was conducted aimed at separating process mapping and BIM planning into separate activities. In Fall 2016, the BIM activity was conducted in groups of three whereas in Spring 2017, the students were asked to create individual process maps for the given BIM use. To understand the impact of the activity on students' perception of their own knowledge, a pre-and post-activity questionnaire was developed. It covered questions related to: (i) students' ability to create a process map, (ii) students' perception about the importance of a process map and (iii) students' perception about their own knowledge of the BIM execution process. The process maps were analyzed using a grading rubric developed by the author. The grading rubric is the major contribution of the work as there is no existing rubric to assess a BIM process map. The grading rubric divides each process map into five sections, including: core activity; activities preceding the core activity; activities following the core activity; loop/iteration; and communication across the swim lanes. The rubric consist of two parts that evaluate (i) the ability of students to demonstrate each section and (ii) the quality of demonstration of each section. The author conducted an inter-rater reliability index to validate the rubric. This inter-rater reliability index compares the scores students’ process maps were when assessed by graduate students, faculty, and industry practitioners. The reviewers graded the same set of twelve process maps. The inter-rater reliability index was found to be 0.21, which indicates a fair agreement between the graders. The non-BIM activity approach was perceived as the most impactful approach by the students. The assessment of the process maps with the rubric indicated that the non-BIM approach was the most impactful approach for enabling students to demonstrate their ability to create a process map.

Contributors

Agent

Created

Date Created
  • 2017

157096-Thumbnail Image.png

Benefits of using augmented reality in planning, construction and post-construction phases in specialty contracting

Description

The construction industry has been growing over the past few years, but it is facing numerous challenges, related to craft labor availability and declining productivity. At the same time, the

The construction industry has been growing over the past few years, but it is facing numerous challenges, related to craft labor availability and declining productivity. At the same time, the industry has benefited from computational advancements by leveraging the use of Building Information Modeling (BIM) to create information rich 3D models to enhance the planning, designing, and construction of projects. Augmented Reality (AR) is one technology that could further leverage BIM, especially on the construction site. This research looks at the human performance attributes enabled using AR as the main information delivery tool in the various stages of construction. The results suggest that using AR for information delivery can enhance labor productivity and enable untrained personnel to complete key construction tasks. However, its usability decreases when higher accuracy levels are required. This work contributes to the body of knowledge by empirically testing and validating the performance effects of using AR during construction tasks and highlights the limitations of current generation AR technology related to the construction industry. This work serves as foundation of future industry-based AR applications and research into potential AR implementations.

Contributors

Agent

Created

Date Created
  • 2019

153400-Thumbnail Image.png

Analyzing the impact of building information modeling (BIM) on labor productivity in retrofit construction: case study at a semiconductor manufacturing facility

Description

Economic and environmental concerns necessitate the preference for retrofits over new construction in manufacturing facilities for incorporating modern technology, expanding production, becoming more energy-efficient and improving operational efficiency. Despite the

Economic and environmental concerns necessitate the preference for retrofits over new construction in manufacturing facilities for incorporating modern technology, expanding production, becoming more energy-efficient and improving operational efficiency. Despite the technical and functional challenges in retrofits, the expectation from the project team is to; reduce costs, ensure the time to market and maintain a high standard for quality and safety. Thus, the construction supply chain faces increasing pressure to improve performance by ensuring better labor productivity, among other factors, for efficiency gain. Building Information Modeling (BIM) & off-site prefabrication are determined as effective management & production methods to meet these goals. However, there are limited studies assessing their impact on labor productivity within the constraints of a retrofit environment. This study fills the gap by exploring the impact of BIM on labor productivity (metric) in retrofits (context).

BIM use for process tool installation at a semiconductor manufacturing facility serves as an ideal environment for practical observations. Direct site observations indicate a positive correlation between disruptions in the workflow attributed to an immature use of BIM, waste due to rework and high non-value added time at the labor work face. Root-cause analysis traces the origins of the said disruptions to decision-factors that are critical for the planning, management and implementation of BIM. Analysis shows that stakeholders involved in decision-making during BIM planning, management and implementation identify BIM-value based on their immediate utility for BIM-use instead of the utility for the customers of the process. This differing value-system manifests in the form of unreliable and inaccurate information at the labor work face.

Grounding the analysis in theory and observations, the author hypothesizes that stakeholders of a construction project value BIM and BIM-aspects (i.e. geometrical information, descriptive information and workflows) differently and the accuracy of geometrical information is critical for improving labor productivity when using prefabrication in retrofit construction. In conclusion, this research presents a BIM-value framework, associating stakeholders with their relative value for BIM, the decision-factors for the planning, management and implementation of BIM and the potential impact of those decisions on labor productivity.

Contributors

Agent

Created

Date Created
  • 2015

149708-Thumbnail Image.png

Implementation of building information modeling for wafer fab construction

Description

Semiconductor manufacturing facilities are very complex and capital intensive in nature. During the lifecycle of these facilities various disciplines come together, generate and use a tremendous amount of building and

Semiconductor manufacturing facilities are very complex and capital intensive in nature. During the lifecycle of these facilities various disciplines come together, generate and use a tremendous amount of building and process information to support various decisions that enable them to successfully design, build and sustain these advanced facilities. However, a majority of the information generated and processes taking place are neither integrated nor interoperable and result in a high degree of redundancy. The objective of this thesis is to build an interoperable Building Information Model (BIM) for the Base-Build and Tool Installation in a semiconductor manufacturing facility. It examines existing processes and data exchange standards available to facilitate the implementation of BIM and provides a framework for the development of processes and standards that can help in building an intelligent information model for a semiconductor manufacturing facility. To understand the nature of the flow of information between the various stakeholders the flow of information between the facility designer, process tool manufacturer and tool layout designer is examined. An information model for the base build and process tool is built and the industry standards SEMI E6 and SEMI E51 are used as a basis to model the information. It is found that applications used to create information models support interoperable industry standard formats such as the Industry Foundation Classes (IFC) and ISO 15926 in a limited manner. A gap analysis has revealed that interoperability standards applicable to the semiconductor manufacturing industry such as the IFC and ISO15926 need to be expanded to support information transfers unique to the industry. Information modeling for a semiconductor manufacturing facility is unique in that it is a process model (Process Tool Information Model) within a building model (Building Information Model), each of them supported more robustly by different interoperability standards. Applications support interoperability data standards specific to the domain or industry they serve but information transfers need to occur between the various domains. To facilitate flow of information between the different domains it is recommended that a mapping of the industry standards be undertaken and translators between them be developed for business use.

Contributors

Agent

Created

Date Created
  • 2011

150165-Thumbnail Image.png

How to measure the benefits of BIM - a case study approach

Description

As a term and method that is rapidly gaining popularity, Building Information Modeling (BIM) is under the scrutiny of many building professionals questioning its potential benefits on their projects. A

As a term and method that is rapidly gaining popularity, Building Information Modeling (BIM) is under the scrutiny of many building professionals questioning its potential benefits on their projects. A relevant and accepted calculation methodology and baseline to properly evaluate BIM's benefits have not been established, thus there are mixed perspectives and opinions of the benefits of BIM, creating a general misunderstanding of the expected outcomes. The purpose of this thesis was to develop a more complete methodology to analyze the benefits of BIM, apply recent projects to this methodology to quantify outcomes, resulting in a more a holistic framework of BIM and its impacts on project efficiency. From the literature, a framework calculation model to determine the value of BIM is developed and presented. The developed model is applied via case studies within a large industrial setting where similar projects are evaluated, some implementing BIM and some with traditional non-BIM approaches. Cost or investment metrics were considered along with benefit or return metrics. The return metrics were: requests for information, change orders, and duration improvements. The investment metrics were: design and construction costs. The methodology was tested against three separate cases and results on the returns and investments are presented. The findings indicate that in the tool installation department of semiconductor manufacturing, there is a high potential for BIM benefits to be realized. The evidence also suggests that actual returns and investments will vary with each project.

Contributors

Agent

Created

Date Created
  • 2011

150085-Thumbnail Image.png

Crew coordination modeling in wood-framing construction

Description

The wood-framing trade has not sufficiently been investigated to understand the work task sequencing and coordination among crew members. A new mental framework for a performing crew was developed and

The wood-framing trade has not sufficiently been investigated to understand the work task sequencing and coordination among crew members. A new mental framework for a performing crew was developed and tested through four case studies. This framework ensured similar team performance as the one provided by task micro-scheduling in planning software. It also allowed evaluation of the effect of individual coordination within the crew on the crew's productivity. Using design information, a list of micro-activities/tasks and their predecessors was automatically generated for each piece of lumber in the four wood frames. The task precedence was generated by applying elementary geometrical and technological reasoning to each frame. Then, the duration of each task was determined based on observations from videotaped activities. Primavera's (P6) resource leveling rules were used to calculate the sequencing of tasks and the minimum duration of the whole activity for various crew sizes. The results showed quick convergence towards the minimum production time and allowed to use information from Building Information Models (BIM) to automatically establish the optimal crew sizes for frames. Late Start (LS) leveling priority rule gave the shortest duration in every case. However, the logic of LS tasks rule is too complex to be conveyed to the framing crew. Therefore, the new mental framework of a well performing framer was developed and tested to ensure high coordination. This mental framework, based on five simple rules, can be easily taught to the crew and ensures a crew productivity congruent with the one provided by the LS logic. The case studies indicate that once the worst framer in the crew surpasses the limit of 11% deviation from applying the said five rules, every additional percent of deviation reduces the productivity of the whole crew by about 4%.

Contributors

Agent

Created

Date Created
  • 2011