Matching Items (6)
Filtering by

Clear all filters

136356-Thumbnail Image.png
Description
Brief memory tasks for use with pet dogs were developed using radial arm maze performance as a standard comparison measurement of memory capacity. Healthy pet dogs were first tested in a radial arm maze, where more errors made in completing the maze indicated poorer memory. These dogs were later tested

Brief memory tasks for use with pet dogs were developed using radial arm maze performance as a standard comparison measurement of memory capacity. Healthy pet dogs were first tested in a radial arm maze, where more errors made in completing the maze indicated poorer memory. These dogs were later tested with five novel memory tests, three of which utilized a treat placed behind a box with an identical distracter nearby. The treat placement was shown to each dog, and a 35 second delay, a 15 second delay with occluder, or a 15 second delay with room exit was observed before the dog could approach and find the treat. It was found that errors on the delayed match to sample (35 second delay) and occluder/object permanence (15 second delay with occluder) tasks were significantly positively correlated with the average number of errors made in the 8th trial of the radial arm maze (r =.58, p<.01** and r =.49, p<.05*, respectively) indicating that these new brief tests can reliably be used to assess memory in pet dogs.
ContributorsBoileau, Rae Nicole (Author) / Wynne, Clive (Thesis director) / Knight, George (Committee member) / Bimonte-Nelson, Heather (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2015-05
137535-Thumbnail Image.png
Description
There is preclinical evidence that the detrimental cognitive effects of hormone loss can be ameliorated by estrogen therapy (Bimonte, Acosta, & Talboom, 2010), however, one of the primary concerns with current hormone therapies is that they are nonselective, leading to increased risk of breast and endometrial cancers as well as

There is preclinical evidence that the detrimental cognitive effects of hormone loss can be ameliorated by estrogen therapy (Bimonte, Acosta, & Talboom, 2010), however, one of the primary concerns with current hormone therapies is that they are nonselective, leading to increased risk of breast and endometrial cancers as well as heart disease. Thus, in order to achieve a successful and clinically relevant long-term hormone therapy option, it is optimal to find an estrogen therapy regimen that is selective to its target tissue. Recently, phytoestrogens have been found to exert selective, beneficial effects on cognition and brain. For example, genistein and diadzein produce neuroprotective effects in cognitive brain regions (Zhao, Chen, & Diaz Brinton, 2002). The purpose of this study was threefold: 1) to examine the cognitive impact of phytoestrogens in young ovariectomized rats, 2) to replicate the dose effects found in the Luine study (Luine et al., 2006), while controlling for manufacturer differences, and 3) to assess if the rodent diet used in our laboratory has an estrogenic-like cognitive impact.The current findings suggest that, at least for object memory, diets containing varying amounts of phytoestrogens can alter cognition, with diets containing high amounts of phytoestrogens showing potential benefits to this type of memory.
ContributorsWhitton, Elizabeth Nicole (Author) / Bimonte-Nelson, Heather (Thesis director) / Presson, Clark (Committee member) / Baxter, Leslie (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2013-05
136952-Thumbnail Image.png
Description
Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has

Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has been mostly ignored. Characterizing the influence of arm configuration (i.e. intrinsic factors) would allow greater comprehension of sensorimotor integration and assist in interpreting exaggerated movement variability in patients. In this study, subjects were placed in a 3-D virtual reality environment and were asked to move from a starting position to one of three targets in the frontal plane with and without visual feedback of the moving limb. The alternating of visual feedback during trials increased uncertainty between the planning and execution phases. The starting limb configurations, adducted and abducted, were varied in separate blocks. Arm configurations were setup by rotating along the shoulder-hand axis to maintain endpoint position. The investigation hypothesized: 1) patterns of endpoint variability of movements would be dependent upon the starting arm configuration and 2) any differences observed would be more apparent in conditions that withheld visual feedback. The results indicated that there were differences in endpoint variability between arm configurations in both visual conditions, but differences in variability increased when visual feedback was withheld. Overall this suggests that in the presence of visual feedback, planning of movements in 3D space mostly uses coordinates that are arm configuration independent. On the other hand, without visual feedback, planning of movements in 3D space relies substantially on intrinsic coordinates.
ContributorsRahman, Qasim (Author) / Buneo, Christopher (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136933-Thumbnail Image.png
Description
Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has

Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has been mostly ignored. Characterizing the influence of arm configuration (i.e. intrinsic factors) would allow greater comprehension of sensorimotor integration and assist in interpreting exaggerated movement variability in patients. In this study, subjects were placed in a 3-D virtual reality environment and were asked to move from a starting position to one of three targets in the frontal plane with and without visual feedback of the moving limb. The alternating of visual feedback during trials increased uncertainty between the planning and execution phases. The starting limb configurations, adducted and abducted, were varied in separate blocks. Arm configurations were setup by rotating along the shoulder-hand axis to maintain endpoint position. The investigation hypothesized: 1) patterns of endpoint variability of movements would be dependent upon the starting arm configuration and 2) any differences observed would be more apparent in conditions that withheld visual feedback. The results indicated that there were differences in endpoint variability between arm configurations in both visual conditions, but differences in variability increased when visual feedback was withheld. Overall this suggests that in the presence of visual feedback, planning of movements in 3D space mostly uses coordinates that are arm configuration independent. On the other hand, without visual feedback, planning of movements in 3D space relies substantially on intrinsic coordinates.
ContributorsRahman, Qasim (Author) / Buneo, Christopher (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
134782-Thumbnail Image.png
Description
Alzheimer's disease affects a large number of Americans every year, and research on the causes and possible prevention continues to increase. Alzheimer's disease is a form of dementia that causes problems with memory, thinking, and behavior and is thought to be caused by beta-amyloid plaques that form in the brain.

Alzheimer's disease affects a large number of Americans every year, and research on the causes and possible prevention continues to increase. Alzheimer's disease is a form of dementia that causes problems with memory, thinking, and behavior and is thought to be caused by beta-amyloid plaques that form in the brain. In recent years, dogs have been used more and more as an animal model looking at Alzheimer's disease and cognitive dysfunction. Dogs serve as a reliable animal model because effected dogs naturally form the same beta-amyloid plaques that affected humans do as they age. Previous research has shown that older dogs perform worse on various memory tasks than do younger dogs, however researchers have struggled to find a test for dog cognitive dysfunction that is brief and can be performed in the home. The current study aimed to find a brief memory task that requires few materials, but is still reliable. The results of this study do not support the hypothesis that older dogs would perform worse than younger dogs if tested to find a treat with varying time delays of 15, 30, and 45 seconds. The results of this experiment showed a main effect of age (F = 8.40, d.f. 1, 19, p < 0.01) and delay (F = 15.14, d.f. 2, 30, p < 0.01), but age-delay interaction was not significant (F = 2.53, d.f. 2, 30, p = 0.09). Future studies should be performed using a larger sample size and this same protocol to attempt to raise the participation level of the dogs.
ContributorsZimmerman, Megan Renee (Author) / Wynne, Clive (Thesis director) / Bimonte-Nelson, Heather (Committee member) / Department of Psychology (Contributor) / W. P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135023-Thumbnail Image.png
Description
Recent work in free-recall tasks suggest that human memory foraging may follow a Lévy flight distribution – a random walk procedure that is common in other activities of cognitive agents, such as animal and human food foraging. This study attempts to draw parallels between memory search and physical search, with

Recent work in free-recall tasks suggest that human memory foraging may follow a Lévy flight distribution – a random walk procedure that is common in other activities of cognitive agents, such as animal and human food foraging. This study attempts to draw parallels between memory search and physical search, with the assumption that humans follow similar search patterns in both. To date, research merely equates the two processes (foraging in memory and the physical world) based on a similarity in statistical structure. This study starts with demonstrating a relationship between physical distance traveled and IRIs by having participants list countries. An IRI, inter-retrieval interval, is the time interval between items recalled. The next experiment uses multidimensional scaling (MDS) to derive a Euclidean perceptual space from similarity ratings of freely-recalled items and then maps the trajectory of human thought through this perceptual space. This trajectory can offer a much more compelling comparison to physical foraging behavior. Finally, a possible correlate of Lévy flight foraging is explored called critical slowing down. Statistically significant evidence was found in all three experiments. The discussion connects all three experiments and what their results mean for human memory foraging.
ContributorsGreer, Katharine Marie (Author) / Amazeen, Eric L. (Thesis director) / Glenberg, Arthur (Committee member) / Amazeen, Polemnia (Committee member) / Department of Psychology (Contributor) / School of Criminology and Criminal Justice (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12