Matching Items (25)

131736-Thumbnail Image.png

Narcotics Consumption Trends at a Southwestern U.S. University Campus in 2017-2018 Tracked By Wastewater-Based Epidemiology

Description

Current methods measuring the consumption of prescription and illicit drugs are often hampered by innate limitations, the data is slow and often restricted, which can impact the relevance and robustness

Current methods measuring the consumption of prescription and illicit drugs are often hampered by innate limitations, the data is slow and often restricted, which can impact the relevance and robustness of the associated data. Here, wastewater-based epidemiology (WBE) was applied as an alternative metric to measure trends in the consumption of twelve narcotics within a collegiate setting from January 2018 to May 2018 at a Southwestern U.S. university. The present follow-up study was designed to identify potential changes in the consumption patterns of prescription and illicit drugs as the academic year progressed. Samples were collected from two sites that capture nearly 100% of campus-generated wastewater. Seven consecutive 24-hour composite raw wastewater samples were collected each month (n = 68) from both locations. The study identified the average consumption of select narcotics, in units of mg/day/1000 persons in the following order: cocaine (528 ± 266), heroin (404 ± 315), methylphenidate (343 ± 396), amphetamine (308 ±105), ecstasy (MDMA; 114 ± 198), oxycodone (57 ± 28), methadone (58 ± 73), and codeine (84 ± 40). The consumption of oxycodone, methadone, heroin, and cocaine were identified as statistically lower in the Spring 2018 semester compared to the Fall 2017. Universities may need to increase drug education for the fall semester to lower the consumption of drugs in that semester. Data from this research encompasses both human health and the built environment by evaluating public health through collection of municipal wastewater, allowing public health officials rapid and robust narcotic consumption data while maintaining the anonymity of the students, faculty, and staff.

Contributors

Agent

Created

Date Created
  • 2020-05

147780-Thumbnail Image.png

Assessment of Antibiotic Resistance in a Managed Aquifer Recharge System: Water Sustainability and Water Quality

Description

Managed Aquifer Recharge is an increasingly prevalent solution to sustain water availability in arid regions. Recharge of groundwater resources using treated wastewater effluent is one type of managed aquifer recharge

Managed Aquifer Recharge is an increasingly prevalent solution to sustain water availability in arid regions. Recharge of groundwater resources using treated wastewater effluent is one type of managed aquifer recharge that offers long-term sustainable water management. However, there are some concerns regarding the reuse of wastewater and its potential to increase exposures to antibiotic resistant bacteria and antibiotic resistance genes that could affect human health. Antibiotic resistance genes can confer the ability for bacteria to resist antibacterial treatment, rendering their presence in water supplies as an area of research needed to evaluate where environmental “hot spots” of potential antibiotic resistance disseminate. To evaluate the occurrence of antibiotic resistant bacteria and antibiotic resistance genes, sampling of an Arizona managed aquifer recharge facility was performed, with target antibiotic resistance genes measured using quantitative polymerase chain reaction. The occurrence of antibiotic resistance genes was evaluated at several sampling wells and in sediments to examine trade-offs between water quantity benefits and water quality issues. The goal of this work is to inform management operations for secure water quality in the face of climate change.

Contributors

Agent

Created

Date Created
  • 2021-05

136304-Thumbnail Image.png

Ionic Liquids: A Meta-Analysis of the Toxicity Literature

Description

A meta-analysis was conducted to compare the total amount of ionic liquid (IL) literature (n = 39,036) to the body of publications dealing with IL toxicity (n = 213), with

A meta-analysis was conducted to compare the total amount of ionic liquid (IL) literature (n = 39,036) to the body of publications dealing with IL toxicity (n = 213), with the goal of establishing the state of knowledge and existing information gaps. Publications on IL toxicity were collected from the SciFinder database and sorted by cation and model organism studied. Studies focusing on pharmacokinetics and drug development were excluded, as were structure-activity relationship methods of data collection. Total publishing activity was used as a measure to gauge research and industrial usage of ILs as well as the knowledge base of toxicology. Five of the most commonly studied IL cations were identified and used to establish a relationship between toxicity data and potential of commercial use: imidazolium, ammonium, phosphonium, pyridinium, and pyrrolidinium. Toxicology publications for all IL cations represented 1.2% ± 0.62% of the total publishing activity; compared with other industrial chemicals, these numbers indicate that there is still a paucity of studies on the adverse effects of this class of chemicals. In vitro models and marine bacteria were the most frequently studied biological systems, contributing 18% and 15%, respectively, to the total body of IL toxicity studies. Whole animal studies (n = 87) comprised 41% of IL toxicity studies, with a subset of in vivo mammalian models consisting of 8%. Human toxicology data were found to be limited to in vitro analyses, indicating substantial knowledge gaps. Risks from long-term and chronic low-level exposure to ILs have not been established yet for any model organisms, reemphasizing the need for filling crucial knowledge gaps concerning human health effects and the environmental safety of ILs. Adding to the existing knowledge of the molecular toxicity characteristics of ILs can help inform the design of greener, less toxic and more benign IL technologies.

Contributors

Agent

Created

Date Created
  • 2015-05

Policy Brief: Developing Safer Alternatives to Conventional Plastics and Supporting the Use of Reusable Products Can Reduce Harm to Health and the Environment

Description

Researchers at ASU have identified opportunities to reduce risk to human health and the environment by changing the composition and disposal practices of polymers. Although plastics have benefited society in

Researchers at ASU have identified opportunities to reduce risk to human health and the environment by changing the composition and disposal practices of polymers. Although plastics have benefited society in innumerable ways, the resulting omnipresence of plastics in society has led to concerns about the hazards of constant, low-level exposure and the search for options for sustainable disposal.

The team used examples from public health and medicine-sectors that have particularly benefited from polymer applications, to highlight the benefits of using plastics in certain applications and to pinpoint opportunities for reducing risks from all plastics’ uses. These include phasing out polymers that contain components associated with negative health effects, diminishing the need to dispose of large quantities of plastic through reduction and reuse, and promoting and developing less harmful alternatives to conventional plastics.

For additional discussion please see the publication Plastics and Environmental Health: the Road Ahead available online here.

Contributors

152092-Thumbnail Image.png

Meat consumption, moral foundations and ecological behaviors among college students

Description

In recent years, overall consumption of meat products has been decreasing, and at the same time vegetarianism is on the rise. A variety of factors are likely driving changes in

In recent years, overall consumption of meat products has been decreasing, and at the same time vegetarianism is on the rise. A variety of factors are likely driving changes in consumers' attitudes towards, and consumption of, meat products. Although concern regarding animal welfare may contribute to these trends, growing consumer interest in the roles that production and processing of meat play in terms of environmental degradation could also impact individuals' decisions about the inclusion of meat in their diets. Because these factors could be related to moral attitudes as well, the purpose of this study was to explore the relations among meat consumption, general environmental attitudes, and moral `foundations' of decision-making, including concern about minimizing `harm' and maximizing `care,' as well as issues of `purity' and `sanctity.' A survey was conducted among current college students using the New Ecological Paradigm scale and the Moral Foundations Questionnaire to assess environmental and moral attitudes. A food frequency questionnaire was used to assess meat consumption. Multiple linear regression analyses explored the relations of environmental and moral attitudes with meat consumption, controlling for potential confounding variables. The results showed no significant correlations among meat consumption, environmental attitudes or moral foundations of harm/care and purity/sanctity.

Contributors

Agent

Created

Date Created
  • 2013

156161-Thumbnail Image.png

Tracking chemical indicators of public health in the urban water environment

Description

This dissertation focuses on the application of urban metabolism metrology (UMM) to process streams of the natural and built water environment to gauge public health concerning exposure to carcinogenic N-nitrosamines

This dissertation focuses on the application of urban metabolism metrology (UMM) to process streams of the natural and built water environment to gauge public health concerning exposure to carcinogenic N-nitrosamines and abuse of narcotics. A survey of sources of exposure to N-nitrosamines in the U.S. population identified contaminated food products (1,900 ± 380 ng/day) as important drivers of attributable cancer risk (Chapter 2). Freshwater sediments in the proximity of U.S. municipal wastewater treatment plants were shown for the first time to harbor carcinogenic N-nitrosamine congeners, including N-nitrosodibutylamine (0.2-3.3 ng/g dw), N-nitrosodiphenylamine (0.2-4.7 ng/g dw), and N-nitrosopyrrolidine (3.4-19.6 ng/g dw) were, with treated wastewater discharge representing one potential factor contributing to the observed contamination (p=0.42) (Chapter 3). Opioid abuse rates in two small midwestern communities were estimated through the application of wastewater-based epidemiology (WBE). Average concentrations of opioids (City 1; City 2) were highest for morphine (713 ± 38, 306 ± 29 ng/L) and varied by for the remainder of the screened analytes. Furthermore, concentrations of the powerful opioid fentanyl (1.7 ± 0.2, 1.0 ± 0.5 ng/L) in wastewater were reported for the first time in the literature for the U.S. (Chapter 4). To gauge narcotic consumption within college-aged adults the WBE process used in Chapter 4 was applied to wastewater collected from a large university in the Southwestern U.S. Estimated narcotics consumption, in units of mg/day/1,000 persons showed the following rank order: cocaine (470 ± 42), heroin (474 ± 32), amphetamine (302 ± 14) and methylphenidate (236 ± 28). Most parental drugs and their respective metabolites showed detection frequencies in campus wastewater of 80% or more, with the notable exception of fentanyl, norfentanyl, buprenorphine, and norbuprenorphine. Estimated consumption of all narcotics, aside from attention-deficit/hyperactivity disorder medication, were higher than values reported in previous U.S. WBE studies for U.S. campuses (Chapter 5). The analyses presented here have identified variation in narcotic consumption habits across different U.S. communities, which can be gauged through UMM. Application of these techniques should be implemented throughout U.S. communities to provide insight into ongoing substance abuse and health issues within a community.

Contributors

Agent

Created

Date Created
  • 2018

154136-Thumbnail Image.png

School air toxic monitoring project: Church Rock Elementary School

Description

United States Environmental Protection Agency (USEPA) had identified and recommended air quality monitoring to take place at 63 schools throughout the country. Unfortunately, tribal schools were not considered during the

United States Environmental Protection Agency (USEPA) had identified and recommended air quality monitoring to take place at 63 schools throughout the country. Unfortunately, tribal schools were not considered during the time USEPA conducted the analysis. The importance of identifying any air toxic pollutants affecting school children needs to be analyzed. Conducting an air monitoring toxic analysis on the Navajo Nation at Church Rock Elementary School, Church Rock, New Mexico (CRNM) was carried out. The current school location posed a concern, in regards to the surrounding stationary, mobile, and natural emissions emitted all types of toxic pollutants. USEPA sponsors various air monitoring program, which Tribal Air Monitoring Support (TAMS) program undertook, and offered tribal programs, organizations or agencies to utilized air monitoring equipment's. The air monitoring setup was conducted with the contract Eastern Research Group, Inc. (ERG) laboratory, where collection of 24-hour ambient air samples for 60 days on a 6-day sampling interval were performed. The analysis for volatile organic compounds (VOCs)were collected from canister samples using USEPA Compendium Method TO-15, polycyclic aromatic hydrocarbons (PAHs) from polyurethane foam (PUF) and XAD-2 resin samples using USEPA Compendium Method TO-13A. Carbonyl compounds were collected by sorbent cartridge samples using USEPA Compendium Method TO-11A, and trace of metals from filters were sampled using USEPA Compendium Method IO-3.5 and FEM EQL-0512-202. A total of 53 VOC concentrations were greater than 1 μg/m3, where dichlorodifluoromethane, trichlorofluoromethane, chloromethane, dichloromethane, propylene, toluene, acrolein and acetylene were detected. A total of 23 carbonyl compound concentrations were greater than 1 μg/m3, where acetone and formaldehyde were measured. Naphthalene average with the highest average for PAHs, where phenanthrene and retene were the second and third highest averages. As for the metals the highest averages resulted from manganese, chromium and lead. Overall, the air toxic pollutants resulted from CRNM surrounding monitoring site were detected. Identifying the potential emitter source or sources cannot be assessed.

Contributors

Agent

Created

Date Created
  • 2015

157222-Thumbnail Image.png

Diagnosing a silent epidemic: the historical ecology of metal pollution in the Sonoran Desert

Description

This research investigates the biophysical and institutional mechanisms affecting the distribution of metals in the Sonoran Desert of Arizona. To date, a long-term, interdisciplinary perspective on metal pollution in the

This research investigates the biophysical and institutional mechanisms affecting the distribution of metals in the Sonoran Desert of Arizona. To date, a long-term, interdisciplinary perspective on metal pollution in the region has been lacking. To address this gap, I integrated approaches from environmental chemistry, historical geography, and institutional economics to study the history of metal pollution in the desert. First, by analyzing the chemistry embodied in the sequentially-grown spines of long-lived cacti, I created a record of metal pollution that details biogeochemical trends in the desert since the 1980s. These data suggest that metal pollution is not simply a legacy of early industrialization. Instead, I found evidence of recent metal pollution in both the heart of the city and a remote, rural location. To understand how changing land uses may have contributed to this, I next explored the historical geography of industrialization in the desert. After identifying cities and mining districts as hot spots for airborne metals, I used a mixture of historical reports, maps, and memoirs to reconstruct the industrial history of these polluted landscapes. In the process, I identified three key transitions in the energy-metal nexus that drove the redistribution of metals from mineral deposits to urban communities. These transitions coincided with the Columbian exchange, the arrival of the railroads, and the economic restructuring that accompanied World War II. Finally, to determine how legal and political forces may be influencing the fate of metals, I studied the evolution of the rights and duties affecting metals in their various forms. This allowed me to track changes in the institutions regulating metals from the mining laws of the 19th century through their treatment as occupational and public health hazards in the 20th century. In the process, I show how Arizona’s environmental and resource institutions were often transformed by extra-territorial concerns. Ultimately, this created an institutional system that compartmentalizes metals and fails to appreciate their capacity to mobilize across legal and biophysical boundaries to accumulate in the environment. Long-term, interdisciplinary perspectives such as this are critical for untangling the complex web of elements and social relations transforming the modern world.

Contributors

Agent

Created

Date Created
  • 2019

157593-Thumbnail Image.png

Novel image-based methods for quantitative real time environmental monitoring

Description

Environmental pollution has been one of the most challenging problems in modern society and more and more health issues are now linked to environmental pollution and especially, air pollution. Certain

Environmental pollution has been one of the most challenging problems in modern society and more and more health issues are now linked to environmental pollution and especially, air pollution. Certain sensitive group like patients with asthma are highly influenced by the environmental air quality and knowledge of the daily air pollution exposure is of great importance for the management and prevention of asthma attack. Hence small form factor, real time, accurate, sensitive and easy to use portable devices for environmental monitoring are of great value.

Three novel image-based methods for quantitative real time environmental monitoring were introduced and the sensing principle, sensor performances were evaluated through simulation and field tests. The first sensing principle uses surface plasmon resonance (SPR) image and home-made molecular sieve (MS) column to realize real time chemical separation and detection. SPR is sensitive and non-specific, which makes it a desirable optical method for sensitive biological and chemical sensing, the miniaturized MS column provides small area footprint and makes it possible for SPR to record images of the whole column area. The innovative and system level integration approach provide a new way for simultaneous chemical separation and detection. The second sensor uses scattered laser light, Complementary metal-oxide-semiconductor (CMOS) imager and image processing to realize real-time particulate matter (PM) sensing. Complex but low latency algorithm was developed to obtain real time information for PM including PM number, size and size distribution. The third sensor uses gradient based colorimetric sensor, absorbance light signal and image processing to realize real-time Ozone sensing and achieved high sensitivity and substantially longer lifetime compared to conventional colorimetric sensors. The platform provides potential for multi-analyte integration and large-scale consumer use as wearable device.

The three projects provide novel, state-of-the-art and sensitive solutions for environmental and personal exposure monitoring. Moreover, the sensing platforms also provide tools for clinicians and epidemiologists to conduct large scale clinical studies on the adverse health effects of pollutants on various kinds of diseases.

Contributors

Agent

Created

Date Created
  • 2019

149980-Thumbnail Image.png

Ghostworkers and greens: collaborative engagements in pesticide reform, 1962-2011

Description

Growers and the USDA showed increasing favor for agricultural chemicals over cultural and biological forms of pest control through the first half of the twentieth century. With the introduction of

Growers and the USDA showed increasing favor for agricultural chemicals over cultural and biological forms of pest control through the first half of the twentieth century. With the introduction of DDT and other synthetic chemicals to commercial markets in the post-World War II era, pesticides became entrenched as the primary form of pest control in the industrial agriculture production system. Despite accumulating evidence that some pesticides posed a threat to human and environmental health, growers and government exercised path-dependent behavior in the development and implementation of pest control strategies. As pests developed resistance to regimens of agricultural chemicals, growers applied pesticides with greater toxicity in higher volumes to their fields with little consideration for the unintended consequences of using the economic poisons. Consequently, pressure from non-governmental organizations proved a necessary predicate for pesticide reform. This dissertation uses a series of case studies to examine the role of non-governmental organizations, particularly environmental organizations and farmworker groups, in pesticide reform from 1962 to 2011. For nearly fifty years, these groups served as educators, communicating scientific and experiential information about the adverse effects of pesticides on human health and environment to the public, and built support for the amendment of pesticide policies and the alteration of pesticide use practices. Their efforts led to the passage of more stringent regulations to better protect farmworkers, the public, and the environment. Environmental organizations and farmworker groups also acted as watchdogs, monitoring the activity of regulatory agencies and bringing suit when necessary to ensure that they fulfilled their responsibilities to the public. This dissertation will build on previous scholarly work to show increasing collaboration between farmworker groups and environmental organizations. It argues that the organizations shared a common concern about the effects of pesticides on human health, which enabled bridge-builders within the disparate organizations to foster cooperative relationships. Bridge-building proved a mutually beneficial exercise. Variance in organizational strategies and the timing of different reform efforts limited, but did not eliminate, opportunities for collaboration. Coalitions formed when groups came together temporarily, and then drifted apart when a reform effort reached its terminus, leaving future collaboration still possible.

Contributors

Agent

Created

Date Created
  • 2011