Matching Items (8)

134108-Thumbnail Image.png

The Plastic Problem

Description

This project is focused on local scale sustainability. The goal is to understand the impact of small unsustainable actions of people, and hopefully create a change in their habits. The

This project is focused on local scale sustainability. The goal is to understand the impact of small unsustainable actions of people, and hopefully create a change in their habits. The focus was plastic usage, such as the use of water bottles, grocery bags, or even the packaging that our food and other products typically come in. Plastic has become an integral part of lives, where we do not even think of our actions as we stuff our leftover grocery bags in its designated drawer. My goal throughout this project was to guide people to an environmentally conscious lifestyle by increasing the likelihood of recycling on the ASU campus. I created an interactive informative presentation that focused on recycling and preventing plastic and unwanted trash from ending up in landfills and oceans. The presentation was given to a small group of participants along with two surveys. There was a survey provided before the presentation to gauge a participant's present recycling habits then there was a survey that was given some time after the presentation to track if certain recycling habits had changed due to the presentation. The post presentation survey did report that there were changes to some of the participants' recycling habits. The research provides suggestions to help increase recycling and waste prevention based off surveys that were widely distributed on campus. The top three suggestions that would help make recycling more prevalent on campus are: education on the subject, more accessibility to recycling bins, and creating an incentive program.

Contributors

Created

Date Created
  • 2017-12

133533-Thumbnail Image.png

Anisotropic Effects on the Mechanical Properties of Additively Manufactured Plastics

Description

This study analyzes mechanical properties of additively manufactured plastic materials produced in a conventional 3D printer. This topic has generally been studied in controlled scenarios, and this study aims to

This study analyzes mechanical properties of additively manufactured plastic materials produced in a conventional 3D printer. This topic has generally been studied in controlled scenarios, and this study aims to reflect the properties seen by consumers. Layered prints are inherently anisotropic due to the direction of the layers and associated weaknesses or stress concentrators. Thus, the ultimate strength and elastic modulus of plastic specimens produced using default settings are compared based on print orientation angle, and trends are observed. When a specimen is parallel to the build plate, it tends to have ultimate strength and elastic modulus near the published bulk values of 13.2MPa and 404-710MPa, but these values tend to decrease as the print angle increases.

Contributors

Created

Date Created
  • 2018-05

137727-Thumbnail Image.png

Plastics and Environmental Health: The Road Ahead

Description

Plastics continue to benefit society in innumerable ways, even though recent public focus on plastics has centered mostly on human health and environmental concerns, including their endocrine-disrupting properties and the

Plastics continue to benefit society in innumerable ways, even though recent public focus on plastics has centered mostly on human health and environmental concerns, including their endocrine-disrupting properties and the long-term pollution they represent. The benefits of plastics are particularly apparent in medicine and public health. Plastics are versatile, cost-effective, require less energy to produce than alternative materials like metal or glass, and can be manufactured to have many different properties. Due to these characteristics, polymers are used in diverse health applications like disposable syringes and intravenous bags, sterile packaging for medical instruments as well as in joint replacements, tissue engineering, etc. However, not all current uses of plastics are prudent and sustainable, as illustrated by the widespread, unwanted human exposure to endocrine-disrupting bisphenol A (BPA) and di-(2-ethylhexyl) phthalate (DEHP), problems arising from the large quantities of plastic being disposed of, and depletion of non-renewable petroleum resources as a result of the ever-increasing mass production of plastic consumer articles. Using the health-care sector as example, this review concentrates on the benefits and downsides of plastics and identifies opportunities to change the composition and disposal practices of these invaluable polymers for a more sustainable future consumption. It highlights ongoing efforts to phase out DEHP and BPA in the health-care and food industry and discusses biodegradable options for plastic packaging, opportunities for reducing plastic medical waste, and recycling in medical facilities in the quest to reap a maximum of benefits from polymers without compromising human health or the environment in the process.

Contributors

Agent

Created

Date Created
  • 2013-05

Policy Brief: Developing Safer Alternatives to Conventional Plastics and Supporting the Use of Reusable Products Can Reduce Harm to Health and the Environment

Description

Researchers at ASU have identified opportunities to reduce risk to human health and the environment by changing the composition and disposal practices of polymers. Although plastics have benefited society in

Researchers at ASU have identified opportunities to reduce risk to human health and the environment by changing the composition and disposal practices of polymers. Although plastics have benefited society in innumerable ways, the resulting omnipresence of plastics in society has led to concerns about the hazards of constant, low-level exposure and the search for options for sustainable disposal.

The team used examples from public health and medicine-sectors that have particularly benefited from polymer applications, to highlight the benefits of using plastics in certain applications and to pinpoint opportunities for reducing risks from all plastics’ uses. These include phasing out polymers that contain components associated with negative health effects, diminishing the need to dispose of large quantities of plastic through reduction and reuse, and promoting and developing less harmful alternatives to conventional plastics.

For additional discussion please see the publication Plastics and Environmental Health: the Road Ahead available online here.

Contributors

A study of heating and degradation of acrylonitrile-butadiene-styrene/polycarbonate polymer due to ultraviolet lasers illumination during localized pre-deposition heating for fused filament fabrication 3D printing

Description

With the growing popularity of 3d printing in recreational, research, and commercial enterprises new techniques and processes are being developed to improve the quality of parts created. Even so, the

With the growing popularity of 3d printing in recreational, research, and commercial enterprises new techniques and processes are being developed to improve the quality of parts created. Even so, the anisotropic properties is still a major hindrance of parts manufactured in this method. The goal is to produce parts that mimic the strength characteristics of a comparable part of the same design and materials created using injection molding. In achieving this goal the production cost can be reduced by eliminating the initial investment needed for the creation of expensive tooling. This initial investment reduction will allow for a wider variant of products in smaller batch runs to be made available. This thesis implements the use of ultraviolet (UV) illumination for an in-process laser local pre-deposition heating (LLPH). By comparing samples with and without the LLPH process it is determined that applied energy that is absorbed by the polymer is converted to an increase in the interlayer temperature, and resulting in an observed increase in tensile strength over the baseline test samples. The increase in interlayer bonding thus can be considered the dominating factor over polymer degradation.

Contributors

Agent

Created

Date Created
  • 2017

155541-Thumbnail Image.png

Development of Microfabrication Technologies on Oil-based Sealing Devices for Single Cell Metabolic Analysis

Description

In the past decades, single-cell metabolic analysis has been playing a key role in understanding cellular heterogeneity, disease initiation, progression, and drug resistance. Therefore, it is critical to develop technologies

In the past decades, single-cell metabolic analysis has been playing a key role in understanding cellular heterogeneity, disease initiation, progression, and drug resistance. Therefore, it is critical to develop technologies for individual cellular metabolic analysis using various configurations of microfluidic devices. Compared to bulk-cell analysis which is widely used by reporting an averaged measurement, single-cell analysis is able to present the individual cellular responses to the external stimuli. Particularly, oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) are two key parameters to monitor heterogeneous metabolic profiles of cancer cells. To achieve multi-parameter metabolic measurements on single cells, several technical challenges need to be overcome: (1) low adhesion of soft materials micro-fabricated on glass surface for multiple-sensor deposition and single-cell immobilization, e.g. SU-8, KMPR, etc.; (2) high risk of using external mechanical forces to create hermetic seals between two rigid fused silica parts, even with compliance layers; (3) how to accomplish high-throughput for single-cell trapping, metabolic profiling and drug screening; (4) high process cost of micromachining on glass substrate and incapability of mass production.

In this dissertation, the development of microfabrication technologies is demonstrated to design reliable configurations for analyzing multiple metabolic parameters from single cells, including (1) improved KMPR/SU-8 microfabrication protocols for fabricating microwell arrays that can be integrated and sealed to 3 × 3 tri-color sensor arrays for OCR and ECAR measurements; (2) design and characterization of a microfluidic device enabling rapid single-cell trapping and hermetic sealing single cells and tri-color sensors within 10 × 10 hermetically sealed microchamber arrays; (3) exhibition of a low-cost microfluidic device based on plastics for single-cell metabolic multi-parameter profiling. Implementation of these improved microfabrication methods should address the aforementioned challenges and provide a high throughput and multi-parameter single cell metabolic analysis platform.

Contributors

Agent

Created

Date Created
  • 2017

154076-Thumbnail Image.png

Assessment and solutions for waste handling of compostable biopolymers

Description

Fossil resources have enabled the development of the plastic industry in the last century. More recently biopolymers have been making gains in the global plastics market. Biopolymers are plastics derived

Fossil resources have enabled the development of the plastic industry in the last century. More recently biopolymers have been making gains in the global plastics market. Biopolymers are plastics derived from plants, primarily corn, which can function very similarly to fossil based plastics. One difference between some of the dominant biopolymers, namely polylactic acid and thermoplastic starch, and the most common fossil-based plastics is the feature of compostability. This means that biopolymers represent not only a shift from petroleum and natural gas to agricultural resources but also that these plastics have potentially different impacts resulting from alternative disposal routes. The current end of life material flows are not well understood since waste streams vary widely based on regional availability of end of life treatments and the role that decision making has on waste identification and disposal.

This dissertation is focused on highlighting the importance of end of life on the life-cycle of biopolymers, identifying how compostable biopolymer products are entering waste streams, improving collection and waste processing, and quantifying the impacts that result from the disposal of biopolymers. Biopolymers, while somewhat available to residential consumers, are primarily being used by various food service organizations trying to achieve a variety of goals such as zero waste, green advertising, and providing more consumer options. While compostable biopolymers may be able to help reduce wastes to landfill they do result in environmental tradeoffs associated with agriculture during the production phase. Biopolymers may improve the management for compostable waste streams by enabling streamlined services and reducing non-compostable fossil-based plastic contamination. The concerns about incomplete degradation of biopolymers in composting facilities may be ameliorated using alkaline amendments sourced from waste streams of other industries. While recycling still yields major benefits for traditional resins, bio-based equivalents may provide addition benefits and compostable biopolymers offer benefits with regards to global warming and fossil fuel depletion. The research presented here represents two published studies, two studies which have been accepted for publication, and a life-cycle assessment that will be submitted for publication.

Contributors

Agent

Created

Date Created
  • 2015

151280-Thumbnail Image.png

Synthesis and characterization of an ionomer for zinc-air battery cathodes

Description

The work presented in this thesis covers the synthesis and characterization of an ionomer that is applicable to zinc-air batteries. Polysulfone polymer is first chloromethylated and then quaternized to create

The work presented in this thesis covers the synthesis and characterization of an ionomer that is applicable to zinc-air batteries. Polysulfone polymer is first chloromethylated and then quaternized to create an ion-conducting polymer. Nuclear magnetic resonance (NMR) spectra indicates that the degree of chloromethylation was 114%. The chemical and physical properties that were investigated include: the ionic conductivity, ion exchange capacity, water retention capacity, diameter and thickness swelling ratios, porosity, glass transition temperature, ionic conductivity enhanced by free salt addition, and the concentration and diffusivity of oxygen within the ionomer. It was found that the fully hydrated hydroxide form of the ionomer had a room temperature ionic conductivity of 39.92mS/cm while the chloride form had a room temperature ionic conductivity of 11.80mS/cm. The ion exchange capacity of the ionomer was found to be 1.022mmol/g. The water retention capacity (WRC) of the hydroxide form was found to be 172.6% while the chloride form had a WRC of 67.9%. The hydroxide form of the ionomer had a diameter swelling ratio of 34% and a thickness swelling ratio of 55%. The chloride form had a diameter swelling ratio of 32% and a thickness swelling ratio of 28%. The largest pore size in the ionomer was found to be 32.6nm in diameter. The glass transition temperature of the ionomer is speculated to be 344°C. A definite measurement could not be made. The room temperature ionic conductivity at 50% relative humidity was improved to 12.90mS/cm with the addition of 80% free salt. The concentration and diffusivity of oxygen in the ionomer was found to be 1.3 ±0.2mMol and (0.49 ±0.15)x10-5 cm2/s respectively. The ionomer synthesized in this research had material properties and performance that is comparable to other ionomers reported in the literature. This is an indication that this ionomer is suitable for further study and integration into a zinc-air battery. This thesis is concluded with suggestions for future research that is focused on improving the performance of the ionomer as well as improving the methodology.

Contributors

Agent

Created

Date Created
  • 2012