Matching Items (4)
Filtering by

Clear all filters

152884-Thumbnail Image.png
Description
With the power system being increasingly operated near its limits, there is an increasing need for a power-flow (PF) solution devoid of convergence issues. Traditional iterative methods are extremely initial-estimate dependent and not guaranteed to converge to the required solution. Holomorphic Embedding (HE) is a novel non-iterative procedure for solving

With the power system being increasingly operated near its limits, there is an increasing need for a power-flow (PF) solution devoid of convergence issues. Traditional iterative methods are extremely initial-estimate dependent and not guaranteed to converge to the required solution. Holomorphic Embedding (HE) is a novel non-iterative procedure for solving the PF problem. While the theory behind a restricted version of the method is well rooted in complex analysis, holomorphic functions and algebraic curves, the practical implementation of the method requires going beyond the published details and involves numerical issues related to Taylor's series expansion, Padé approximants, convolution and solving linear matrix equations.

The HE power flow was developed by a non-electrical engineer with language that is foreign to most engineers. One purpose of this document to describe the approach using electric-power engineering parlance and provide an understanding rooted in electric power concepts. This understanding of the methodology is gained by applying the approach to a two-bus dc PF problem and then gradually from moving from this simple two-bus dc PF problem to the general ac PF case.

Software to implement the HE method was developed using MATLAB and numerical tests were carried out on small and medium sized systems to validate the approach. Implementation of different analytic continuation techniques is included and their relevance in applications such as evaluating the voltage solution and estimating the bifurcation point (BP) is discussed. The ability of the HE method to trace the PV curve of the system is identified.
ContributorsSubramanian, Muthu Kumar (Author) / Tylavsky, Daniel J (Thesis advisor) / Undrill, John M (Committee member) / Heydt, Gerald T (Committee member) / Arizona State University (Publisher)
Created2014
151097-Thumbnail Image.png
Description
Power generation in remote isolated places is a tough problem. Presently, a common source for remote generation is diesel. However, diesel generation is costly and environmental unfriendly. It is promising to replace the diesel generation with some clean and economical generation sources. The concept of renewable generation offers a solution

Power generation in remote isolated places is a tough problem. Presently, a common source for remote generation is diesel. However, diesel generation is costly and environmental unfriendly. It is promising to replace the diesel generation with some clean and economical generation sources. The concept of renewable generation offers a solution to remote generation. This thesis focuses on evaluation of renewable generation penetration in the remote isolated grid. A small town named Coober Pedy in South Australia is set as an example. The first task is to build the stochastic models of solar irradiation and wind speed based on the local historical data. With the stochastic models, generation fluctuations and generation planning are further discussed. Fluctuation analysis gives an evaluation of storage unit size and costs. Generation planning aims at finding the relationships between penetration level and costs under constraint of energy sufficiency. The results of this study provide the best penetration level that makes the minimum energy costs. In the case of Coober Pedy, cases of wind and photovoltaic penetrations are studied. The additional renewable sources and suspended diesel generation change the electricity costs. Results show that in remote isolated grid, compared to diesel generation, renewable generation can lower the energy costs.
ContributorsZhu, Yujia (Author) / Holbert, Keith E. (Thesis advisor) / Karady, George G. (Committee member) / Tylavsky, Daniel J (Committee member) / Arizona State University (Publisher)
Created2012
155730-Thumbnail Image.png
Description
The holomorphic embedding method (HEM) applied to the power-flow problem (HEPF) has been used in the past to obtain the voltages and flows for power systems. The incentives for using this method over the traditional Newton-Raphson based nu-merical methods lie in the claim that the method is theoretically guaranteed to

The holomorphic embedding method (HEM) applied to the power-flow problem (HEPF) has been used in the past to obtain the voltages and flows for power systems. The incentives for using this method over the traditional Newton-Raphson based nu-merical methods lie in the claim that the method is theoretically guaranteed to converge to the operable solution, if one exists.

In this report, HEPF will be used for two power system analysis purposes:

a. Estimating the saddle-node bifurcation point (SNBP) of a system

b. Developing reduced-order network equivalents for distribution systems.

Typically, the continuation power flow (CPF) is used to estimate the SNBP of a system, which involves solving multiple power-flow problems. One of the advantages of HEPF is that the solution is obtained as an analytical expression of the embedding parameter, and using this property, three of the proposed HEPF-based methods can es-timate the SNBP of a given power system without solving multiple power-flow prob-lems (if generator VAr limits are ignored). If VAr limits are considered, the mathemat-ical representation of the power-flow problem changes and thus an iterative process would have to be performed in order to estimate the SNBP of the system. This would typically still require fewer power-flow problems to be solved than CPF in order to estimate the SNBP.

Another proposed application is to develop reduced order network equivalents for radial distribution networks that retain the nonlinearities of the eliminated portion of the network and hence remain more accurate than traditional Ward-type reductions (which linearize about the given operating point) when the operating condition changes.

Different ways of accelerating the convergence of the power series obtained as a part of HEPF, are explored and it is shown that the eta method is the most efficient of all methods tested.

The local-measurement-based methods of estimating the SNBP are studied. Non-linear Thévenin-like networks as well as multi-bus networks are built using model data to estimate the SNBP and it is shown that the structure of these networks can be made arbitrary by appropriately modifying the nonlinear current injections, which can sim-plify the process of building such networks from measurements.
ContributorsRao, Shruti Dwarkanath (Author) / Tylavsky, Daniel J (Thesis advisor) / Undrill, John (Committee member) / Vittal, Vijay (Committee member) / Pal, Anamitra (Committee member) / Arizona State University (Publisher)
Created2017
153072-Thumbnail Image.png
Description
The development of new policies favoring integration of renewable energy into the grid has created a need to relook at our existing infrastructure resources and at the way the power system is currently operated. Also, the needs of electric energy markets and transmission/generation expansion planning has created a niche for

The development of new policies favoring integration of renewable energy into the grid has created a need to relook at our existing infrastructure resources and at the way the power system is currently operated. Also, the needs of electric energy markets and transmission/generation expansion planning has created a niche for development of new computationally efficient and yet reliable, simple and robust power flow tools for such studies. The so called dc power flow algorithm is an important power flow tool currently in use. However, the accuracy and performance of dc power flow results is highly variable due to the various formulations which are in use. This has thus intensified the interest of researchers in coming up with better equivalent dc models that can closely match the performance of ac power flow solution.

This thesis involves the development of novel hot start dc model using a power transfer distribution factors (PTDFs) approach. This document also discusses the problems of ill-conditioning / rank deficiency encountered while deriving this model. This model is then compared to several dc power flow models using the IEEE 118-bus system and ERCOT interconnection both as the base case ac solution and during single-line outage contingency analysis. The proposed model matches the base case ac solution better than contemporary dc power flow models used in the industry.
ContributorsSood, Puneet (Author) / Tylavsky, Daniel J (Thesis advisor) / Vittal, Vijay (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2014