Matching Items (5)
Filtering by

Clear all filters

152336-Thumbnail Image.png
Description
Flow measurement has always been one of the most critical processes in many industrial and clinical applications. The dynamic behavior of flow helps to define the state of a process. An industrial example would be that in an aircraft, where the rate of airflow passing the aircraft is used to

Flow measurement has always been one of the most critical processes in many industrial and clinical applications. The dynamic behavior of flow helps to define the state of a process. An industrial example would be that in an aircraft, where the rate of airflow passing the aircraft is used to determine the speed of the plane. A clinical example would be that the flow of a patient's breath which could help determine the state of the patient's lungs. This project is focused on the flow-meter that are used for airflow measurement in human lungs. In order to do these measurements, resistive-type flow-meters are commonly used in respiratory measurement systems. This method consists of passing the respiratory flow through a fluid resistive component, while measuring the resulting pressure drop, which is linearly related to volumetric flow rate. These types of flow-meters typically have a low frequency response but are adequate for most applications, including spirometry and respiration monitoring. In the case of lung parameter estimation methods, such as the Quick Obstruction Method, it becomes important to have a higher frequency response in the flow-meter so that the high frequency components in the flow are measurable. The following three types of flow-meters were: a. Capillary type b. Screen Pneumotach type c. Square Edge orifice type To measure the frequency response, a sinusoidal flow is generated with a small speaker and passed through the flow-meter that is connected to a large, rigid container. True flow is proportional to the derivative of the pressure inside the container. True flow is then compared with the measured flow, which is proportional to the pressure drop across the flow-meter. In order to do the characterization, two LabVIEW data acquisition programs have been developed, one for transducer calibration, and another one that records flow and pressure data for frequency response testing of the flow-meter. In addition, a model that explains the behavior exhibited by the flow-meter has been proposed and simulated. This model contains a fluid resistor and inductor in series. The final step in this project was to approximate the frequency response data to the developed model expressed as a transfer function.
ContributorsHu, Jianchen (Author) / Macia, Narciso (Thesis advisor) / Pollat, Scott (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2013
152865-Thumbnail Image.png
Description
As global energy demand has dramatically increased and traditional fossil fuels will be depleted in the foreseeable future, clean and unlimited renewable energies are recognized as the future global energy challenge solution. Today, the power grid in U.S. is building more and more renewable energies like wind and solar, while

As global energy demand has dramatically increased and traditional fossil fuels will be depleted in the foreseeable future, clean and unlimited renewable energies are recognized as the future global energy challenge solution. Today, the power grid in U.S. is building more and more renewable energies like wind and solar, while the electric power system faces new challenges from rapid growing percentage of wind and solar. Unlike combustion generators, intermittency and uncertainty are the inherent features of wind and solar. These features bring a big challenge to the stability of modern electric power grid, especially for a small scale power grid with wind and solar. In order to deal with the intermittency and uncertainty of wind and solar, energy storage systems are considered as one solution to mitigate the fluctuation of wind and solar by smoothing their power outputs. For many different types of energy storage systems, this thesis studied the operation of battery energy storage systems (BESS) in power systems and analyzed the benefits of the BESS. Unlike many researchers assuming fixed utilization patterns for BESS and calculating the benefits, this thesis found the BESS utilization patterns and benefits through an investment planning model. Furthermore, a cost is given for utilizing BESS and to find the best way of operating BESS rather than set an upper bound and a lower bound for BESS energy levels. Two planning models are proposed in this thesis and preliminary conclusions are derived from simulation results. This work is organized as below: chapter 1 briefly introduces the background of this research; chapter 2 gives an overview of previous related work in this area; the main work of this thesis is put in chapter 3 and chapter 4 contains the generic BESS model and the investment planning model; the following chapter 5 includes the simulation and results analysis of this research and chapter 6 provides the conclusions from chapter 5.
ContributorsDai, Daihong (Author) / Hedman, Kory W (Thesis advisor) / Zhang, Muhong (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2014
153294-Thumbnail Image.png
Description
This study evaluates the potential profitability and environmental benefit available by providing renewable energy from solar- or wind-generated sources to electric vehicle drivers at public charging stations, also known as electric vehicle service equipment (EVSE), in the U.S. Past studies have shown above-average interest in renewable energy by drivers

This study evaluates the potential profitability and environmental benefit available by providing renewable energy from solar- or wind-generated sources to electric vehicle drivers at public charging stations, also known as electric vehicle service equipment (EVSE), in the U.S. Past studies have shown above-average interest in renewable energy by drivers of plug-in electric vehicles (PEVs), though no study has evaluated the profitability and environmental benefit of selling renewable energy to PEV drivers at public EVSE. Through an online survey of 203 U.S.-wide PEV owners and lessees, information was collected on (1) current PEV and EVSE usage, (2) potential willingness to pay (WTP) for upgrading their charge event to renewable energy, and (3) usage of public EVSE if renewable energy was offered. The choice experiment survey method was used to avoid bias known to occur when directly asking for WTP. Sixty percent of the participants purchased their PEVs due to environmental concerns. The survey results indicate a 506% increase in the usage of public pay-per-use EVSE if renewable energy was offered and a mean WTP to upgrade to renewable energy of $0.61 per hour for alternating current (AC) Level 2 EVSE and $1.82 for Direct Current (DC) Fast Chargers (DCFC). Based on data from the 2013 second quarter (2Q) report of The EV Project, which uses the Blink public EVSE network, this usage translates directly to an annual gross income increase of 668% from the original $1.45 million to $11.1 million. Blink would see an annual cost of $16,005 per year for the acquisition of the required renewable energy as renewable energy credits (RECs). Excluding any profit seen purely from the raise in usage, $3.8 million in profits would be gained directly from the sale of renewable energy. Relative to a gasoline-powered internal combustion engine passenger vehicle, greenhouse gas (GHG) emissions are 42% less for the U.S. average blend grid electricity-powered electric vehicle and 99.997% less when wind energy is used. Powering all Blink network charge events with wind energy would reduce the annualized 2Q 2013 GHG emissions of 1,589 metric tons CO2 / yr to 125 kg CO2 / yr, which is the equivalent of removing 334 average U.S. gasoline passenger cars from the road. At the increased usage, 8,031 metric tons CO2 / yr would be prevented per year or the equivalent of the elimination of 1,691 average U.S. passenger cars. These economic and environmental benefits will increase as PEV ownership increases over time.
ContributorsNienhueser, Ian Andrew (Author) / Qiu, Yueming (Thesis advisor) / Rogers, Bradley (Thesis advisor) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2014
153667-Thumbnail Image.png
Description
The prevalence of renewable generation will increase in the next several decades and offset conventional generation more and more. Yet this increase is not coming without challenges. Solar, wind, and even some water resources are intermittent and unpredictable, and thereby create scheduling challenges due to their inherent “uncontrolled” nature. To

The prevalence of renewable generation will increase in the next several decades and offset conventional generation more and more. Yet this increase is not coming without challenges. Solar, wind, and even some water resources are intermittent and unpredictable, and thereby create scheduling challenges due to their inherent “uncontrolled” nature. To effectively manage these distributed renewable assets, new control algorithms must be developed for applications including energy management, bridge power, and system stability. This can be completed through a centralized control center though efforts are being made to parallel the control architecture with the organization of the renewable assets themselves—namely, distributed controls. Building energy management systems are being employed to control localized energy generation, storage, and use to reduce disruption on the net utility load. One such example is VOLTTRONTM, an agent-based platform for building energy control in real time. In this thesis, algorithms developed in VOLTTRON simulate a home energy management system that consists of a solar PV array, a lithium-ion battery bank, and the grid. Dispatch strategies are implemented to reduce energy charges from overall consumption ($/kWh) and demand charges ($/kW). Dispatch strategies for implementing storage devices are tuned on a month-to-month basis to provide a meaningful economic advantage under simulated scenarios to explore algorithm sensitivity to changing external factors. VOLTTRON agents provide automated real-time optimization of dispatch strategies to efficiently manage energy supply and demand, lower consumer costs associated with energy usage, and reduce load on the utility grid.
ContributorsCardwell, Joseph (Author) / Johnson, Nathan (Thesis advisor) / Rogers, Bradley (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2015
155066-Thumbnail Image.png
Description
With growing concern regarding environmental issues and the need for a more sustainable grid, power systems have seen a fast expansion of renewable resources in the last decade. The uncertainty and variability of renewable resources has posed new challenges on system operators. Due to its energy-shifting and fast-ramping capabilities, energy

With growing concern regarding environmental issues and the need for a more sustainable grid, power systems have seen a fast expansion of renewable resources in the last decade. The uncertainty and variability of renewable resources has posed new challenges on system operators. Due to its energy-shifting and fast-ramping capabilities, energy storage (ES) has been considered as an attractive solution to alleviate the increased renewable uncertainty and variability.

In this dissertation, stochastic optimization is utilized to evaluate the benefit of bulk energy storage to facilitate the integration of high levels of renewable resources in transmission systems. A cost-benefit analysis is performed to study the cost-effectiveness of energy storage. A two-step approach is developed to analyze the effectiveness of using energy storage to provide ancillary services. Results show that as renewable penetrations increase, energy storage can effectively compensate for the variability and uncertainty in renewable energy and has increasing benefits to the system.

With increased renewable penetrations, enhanced dispatch models are needed to efficiently operate energy storage. As existing approaches do not fully utilize the flexibility of energy storage, two approaches are developed in this dissertation to improve the operational strategy of energy storage. The first approach is developed using stochastic programming techniques. A stochastic unit commitment (UC) is solved to obtain schedules for energy storage with different renewable scenarios. Operating policies are then constructed using the solutions from the stochastic UC to efficiently operate energy storage across multiple time periods. The second approach is a policy function approach. By incorporating an offline analysis stage prior to the actual operating stage, the patterns between the system operating conditions and the optimal actions for energy storage are identified using a data mining model. The obtained data mining model is then used in real-time to provide enhancement to a deterministic economic dispatch model and improve the utilization of energy storage. Results show that the policy function approach outperforms a traditional approach where a schedule determined and fixed at a prior look-ahead stage is used. The policy function approach is also shown to have minimal added computational difficulty to the real-time market.
ContributorsLi, Nan (Author) / Hedman, Kory W (Thesis advisor) / Tylavksy, Daniel J (Committee member) / Heydt, Gerald T (Committee member) / Sankar, Lalitha (Committee member) / Arizona State University (Publisher)
Created2016