Matching Items (2)
166091-Thumbnail Image.png
Description

Aboveground-belowground relationships between vegetation and its associated soil biotic community play an important role in every terrestrial ecosystem for nutrient cycling and soil health maintenance. Deserts are especially sensitive to change and little is known about Sonoran Desert soil microbiota, while exotic herbaceous species are increasingly invading into the ecosystem

Aboveground-belowground relationships between vegetation and its associated soil biotic community play an important role in every terrestrial ecosystem for nutrient cycling and soil health maintenance. Deserts are especially sensitive to change and little is known about Sonoran Desert soil microbiota, while exotic herbaceous species are increasingly invading into the ecosystem with other harmful effects. In many other environments, soil communities have been associated with both plant species and plant functional type. The soil community food web depends on the sustenance brought by vegetation, and different soil community members are adapted to different diets. In this paper, we hypothesized that invasive plants would cause belowground soil communities to have greater abundance and lesser diversity than those under native, more locally established plants. To test this hypothesis, we selected four desert understory plant taxa: one native grass, one native forb, one invasive grass, and one invasive forb. We predicted that the invasive plants would be associated with a greater count of microarthropods per unit mass of soil but lesser microarthropod species diversity. The invasive plants were not statistically associated with a greater count of microarthropods per kilogram of soil nor lesser microarthropod species diversity. There was not a significant difference in abundance in the microarthropod categories between native and invasive plants, so the hypothesis was rejected. However, the invasive Erodium cicutarium was found to harbor high soil mite abundance, which warrants further study, and it is yet to be seen whether soil moisture and proximity to trees played a role in the data. The results of this study should help in generating more informed hypotheses regarding desert aboveground-belowground relationships.

ContributorsStern, Argon (Author) / Ball, Becky (Thesis director) / Sanin, Maria (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Natural Sciences (Contributor)
Created2022-05
168793-Thumbnail Image.png
Description
Stream metabolism is a critical indicator of ecosystem health and connects stream ecology to global change. Hence, understanding the controls of metabolism is essential because streams integrate land use and could be net sources or sinks of carbon dioxide (and methane) to the atmosphere. Eleven aridland streams in the southwestern

Stream metabolism is a critical indicator of ecosystem health and connects stream ecology to global change. Hence, understanding the controls of metabolism is essential because streams integrate land use and could be net sources or sinks of carbon dioxide (and methane) to the atmosphere. Eleven aridland streams in the southwestern US (Arizona) across a hydroclimatic and size (watershed area) gradient were surveyed, and gross primary production (GPP) and ecosystem respiration (ER) were modeled and averaged seasonally over a period of 2-4 years. The seasonal averaged GPP went as low as 0.001 g O2m-2d-1 (Ramsey Creek in 1st quarter of 2017) and as high as 14.6 g O2m-2d-1 (Santa Cruz River in 2nd quarter of 2017), whereas that of ER ranged from 0.003 (Ramsey Creek in 1st quarter of 2017) to 20.3 g O2m-2d-1 (Santa Cruz River in 2nd quarter of in 2017). The coefficient of variation (CV) of these GPP estimates within site ranged from 42% (Upper Verde River) to 157% (Wet Beaver Creek), with an average CV of GPP 91%, whereas the CV of ER ranged from 32% (Upper Verde River) to 247% (Ramsey Creek), with an average CV of ER 85%. Among 4 main categories of hypothetical predictors (hydrology, nutrient concentration, local environment, and size) on CV and point measurement of stream metabolism, the following conclusion was made: hydrologic variation only predicted the ER and CV of ER but not the GPP or CV of GPP; light and its CV controlled GPP and its CV, respectively, whereas temperature was one of the controlling factors for ER; CV of nutrient concentration was one of the drivers of CV of GPP, nitrate concentration was correlated with point measurement of GPP and ER while soluble reactive phosphorus (SRP) concentration was only relevant to GPP; watershed area was correlated with CV of GPP, while depth mattered to both GPP and ER. My work will enhance our understanding of streams at multiple temporal and spatial scales and ultimately will benefit river management practice.
ContributorsLu, Mengdi (Author) / Grimm, Nancy (Thesis advisor) / Sabo, John (Thesis advisor) / Bang, Christofer (Committee member) / Arizona State University (Publisher)
Created2022