Matching Items (5)
Filtering by

Clear all filters

150192-Thumbnail Image.png
Description
In recent years environmental life-cycle assessments (LCA) have been increasingly used to support planning and development of sustainable infrastructure. This study demonstrates the application of LCA to estimate embedded energy use and greenhouse gas (GHG) emissions related to materials manufacturing and construction processes for low and high density single-family neighborhoods

In recent years environmental life-cycle assessments (LCA) have been increasingly used to support planning and development of sustainable infrastructure. This study demonstrates the application of LCA to estimate embedded energy use and greenhouse gas (GHG) emissions related to materials manufacturing and construction processes for low and high density single-family neighborhoods typically found in the Southwest. The LCA analysis presented in this study includes the assessment of more than 8,500 single family detached units, and 130 miles of related roadway infrastructure. The study estimates embedded and GHG emissions as a function of building size (1,500 - 3000 square feet), number of stories (1 or 2), and exterior wall material composition (stucco, brick, block, wood), roof material composition (clay tile, cement tile, asphalt shingles, built up), and as a function of roadway typology per mile (asphalt local residential roads, collectors, arterials). While a hybrid economic input-out life-cycle assessment is applied to estimate the energy and GHG emissions impacts of the residential units, the PaLATE tool is applied to determine the environmental effects of pavements and roads. The results indicate that low density single family neighborhoods are 2 - 2.5 X more energy and GHG intensive, per residential dwelling (unit) built, than high density residential neighborhoods. This relationship holds regardless of whether the functional unit is per acre or per capita. The results also indicate that a typical low density neighborhood (less than 2 dwellings per acre) requires 78 percent more energy and resource in roadway infrastructure per residential unit than a traditional small lot high density (more than 6 dwelling per acre). Also, this study shows that new master planned communities tend to be more energy intensive than traditional non master planned residential developments.
ContributorsFrijia, Stephane (Author) / Guhathakurta, Subhrajit (Committee member) / Williams, Eric D. (Committee member) / Pijawka, David K (Committee member) / Arizona State University (Publisher)
Created2011
Description

Healthcare infection control has led to increased utilization of disposable medical devices, which has subsequently led to increased adverse environmental effects attributed to healthcare and its supply chain. In dental practice, the dental bur is a commonly used instrument that can either be reused or used once and then disposed.

Healthcare infection control has led to increased utilization of disposable medical devices, which has subsequently led to increased adverse environmental effects attributed to healthcare and its supply chain. In dental practice, the dental bur is a commonly used instrument that can either be reused or used once and then disposed. To evaluate the disparities in environmental impacts of disposable and reusable dental burs, a comparative life cycle assessment (LCA) was performed. The comparative LCA evaluated a reusable dental bur (specifically, a 2.00mm Internal Irrigation Pilot Drill) reused 30 instances versus 30 identical burs used as disposables.

The LCA methodology was performed using framework described by the International Organization for Standardization (ISO) 14040 series. Sensitivity analyses were performed with respect to ultrasonic and autoclave loading. Findings from this research showed that when the ultrasonic and autoclave are loaded optimally, reusable burs had 40% less of an environmental impact than burs used on a disposable basis. When the ultrasonic and autoclave were loaded to 66% capacity, there was an environmental breakeven point between disposable and reusable burs. Eutrophication, carcinogenic impacts, non-carcinogenic impacts, and acidification were limited when cleaning equipment (i.e., ultrasonic and autoclave) were optimally loaded. Additionally, the bur’s packaging materials contributed more negative environmental impacts than the production and use of the bur itself. Therefore, less materially-intensive packaging should be used. Specifically, the glass fiber reinforced plastic casing should be substituted for a material with a reduced environmental footprint.

Created2013-05
Description

This paper researches an attributional life-cycle assessment (ALCA) of a commonly used consumer product, specifically one bottle of 8-ounce Aveeno Daily Moisturizing Lotion. This LCA analyzed the impacts associated from cradle-to-grave processes of one bottle of Aveeno Daily Moisturizing lotion, including raw material extraction, raw material processing, manufacturing, packaging, distribution,

This paper researches an attributional life-cycle assessment (ALCA) of a commonly used consumer product, specifically one bottle of 8-ounce Aveeno Daily Moisturizing Lotion. This LCA analyzed the impacts associated from cradle-to-grave processes of one bottle of Aveeno Daily Moisturizing lotion, including raw material extraction, raw material processing, manufacturing, packaging, distribution, use and end-of-life of both the lotion itself as well as the bottle.

To successfully propose end-of-life management techniques, three different disposal options were analyzed: landfill disposal, incineration and recycling. All processes included in the system boundary were compared across three main midpoint impact categories: Fossil depletion, Freshwater depletion and Global Warming Potential. Results showed that transportation of the product outweighed all other processes in regard to the three impact categories. When all processes but transportation were considered, results showed that raw material extraction and processing was the significant contributor to the three impact categories.

This LCA therefore proposes that Aveeno take advantage of local products to limit the need for excessive transportation. Furthermore, sustainable forms of transportation could be used to offset the product’s overall environmental impacts. In regard to end-of-life disposal options, Aveeno could market recycling techniques to push forth the reuse of their plastic bottle. Considering costs, glass bottle use could also be considered to possibly implement a send-back and reuse option for consumers.

Created2014-06-13
Description

The ultimate goal of this LCA is to give Arizona State University specific advice on possible changes in lighting systems that will reduce environmental impacts and support ASU’s sustainability efforts. The aim is to assess the potential for a decrease in specific environmental impacts (CO2 emissions and energy use) and

The ultimate goal of this LCA is to give Arizona State University specific advice on possible changes in lighting systems that will reduce environmental impacts and support ASU’s sustainability efforts. The aim is to assess the potential for a decrease in specific environmental impacts (CO2 emissions and energy use) and economic impact (cost) from changing to a different type of lighting in a prototypical classroom in Wrigley Hall. The scope of this assessment is to analyze the impacts of T8 lamps lasting 50,000 hours. Thus, a functional unit was defined as 50,000 hours of use, maintaining roughly 825 lumens. To put this in perspective, 50,000 hours is equivalent to 8 hours of use per day, 365 days per year, for approximately 17.1 years.

Created2014-06-13
Description

Hemcrete is an alternative, environmentally‐friendly building material gaining adherents in Great Britain and other European countries. It is an attractive choice as a building material because it is made from a renewable resource, hemp, a hardy plant that is a close, but non‐hallucinogenic relative of marijuana. This plant is relatively easy to cultivate,

Hemcrete is an alternative, environmentally‐friendly building material gaining adherents in Great Britain and other European countries. It is an attractive choice as a building material because it is made from a renewable resource, hemp, a hardy plant that is a close, but non‐hallucinogenic relative of marijuana. This plant is relatively easy to cultivate, requires little in the way of pesticides or fertilizers, and almost all parts can be used for various products from paper to textiles to food.

Hemcrete is made from a mixture of lime, water, and the fibrous outer portion of the hemp plant called the “hurd” or “shive”. When mixed, it is worked and placed much like conventional concrete ‐ hence the name. However, that is where the similarities with concrete end. Hemcrete is not comparable to concrete on a strength basis, and is better described as an alternative insulation product. When built into walls of sufficient thickness, Hemcrete offers high thermal efficiency, and has strong claims to being carbon negative. The purpose of this study
was to evaluate this claim of carbon negativity, and to compare these environmentally friendly qualities against conventional fiberglass batt insulation.

Our model was constructed using two identically sized “walls” measuring eight feet square by one foot in depth, one insulated using Hemcrete, and the other using fiberglass. Our study focused on three areas: water usage, cost, and carbon dioxide emissions. We chose water
usage because we wanted to determine the feasibility of using Hemcrete in the Phoenix metropolitan region where water is a troubled resource. Secondly, we wished to evaluate the claim on carbon negativity, so CO2 equivalents throughout the production process were measured. Finally, we wished to know whether Hemcrete could compete on a cost basis with more conventional insulation methods, so we also built in a price comparison.

Since the cultivation of hemp is currently unlawful in the United States, this study can help determine whether these restrictions should be relaxed in order to allow the construction of buildings insulated with Hemcrete.

Created2013-05