Matching Items (13)
Filtering by

Clear all filters

151979-Thumbnail Image.png
Description
Liquid-liquid interfaces serve as ideal 2-D templates on which solid particles can self-assemble into various structures. These self-assembly processes are important in fabrication of micron-sized devices and emulsion formulation. At oil/water interfaces, these structures can range from close-packed aggregates to ordered lattices. By incorporating an ionic liquid (IL) at the

Liquid-liquid interfaces serve as ideal 2-D templates on which solid particles can self-assemble into various structures. These self-assembly processes are important in fabrication of micron-sized devices and emulsion formulation. At oil/water interfaces, these structures can range from close-packed aggregates to ordered lattices. By incorporating an ionic liquid (IL) at the interface, new self-assembly phenomena emerge. ILs are ionic compounds that are liquid at room temperature (essentially molten salts at ambient conditions) that have remarkable properties such as negligible volatility and high chemical stability and can be optimized for nearly any application. The nature of IL-fluid interfaces has not yet been studied in depth. Consequently, the corresponding self-assembly phenomena have not yet been explored. We demonstrate how the unique molecular nature of ILs allows for new self-assembly phenomena to take place at their interfaces. These phenomena include droplet bridging (the self-assembly of both particles and emulsion droplets), spontaneous particle transport through the liquid-liquid interface, and various gelation behaviors. In droplet bridging, self-assembled monolayers of particles effectively "glue" emulsion droplets to one another, allowing the droplets to self-assembly into large networks. With particle transport, it is experimentally demonstrated the ILs overcome the strong adhesive nature of the liquid-liquid interface and extract solid particles from the bulk phase without the aid of external forces. These phenomena are quantified and corresponding mechanisms are proposed. The experimental investigations are supported by molecular dynamics (MD) simulations, which allow for a molecular view of the self-assembly process. In particular, we show that particle self-assembly depends primarily on the surface chemistry of the particles and the non-IL fluid at the interface. Free energy calculations show that the attractive forces between nanoparticles and the liquid-liquid interface are unusually long-ranged, due to capillary waves. Furthermore, IL cations can exhibit molecular ordering at the IL-oil interface, resulting in a slight residual charge at this interface. We also explore the transient IL-IL interface, revealing molecular interactions responsible for the unusually slow mixing dynamics between two ILs. This dissertation, therefore, contributes to both experimental and theoretical understanding of particle self-assembly at IL based interfaces.
ContributorsFrost, Denzil (Author) / Dai, Lenore L (Thesis advisor) / Torres, César I (Committee member) / Nielsen, David R (Committee member) / Squires, Kyle D (Committee member) / Rege, Kaushal (Committee member) / Arizona State University (Publisher)
Created2013
152958-Thumbnail Image.png
Description
Gold nanoparticles have emerged as promising nanomaterials for biosensing, imaging, photothermal treatment and therapeutic delivery for several diseases, including cancer. We have generated poly(amino ether)-functionalized gold nanorods (PAE-GNRs) using a layer-by-layer deposition approach. Sub-toxic concentrations of PAE-GNRs were employed to deliver plasmid DNA to prostate cancer cells in vitro. PAE-GNRs

Gold nanoparticles have emerged as promising nanomaterials for biosensing, imaging, photothermal treatment and therapeutic delivery for several diseases, including cancer. We have generated poly(amino ether)-functionalized gold nanorods (PAE-GNRs) using a layer-by-layer deposition approach. Sub-toxic concentrations of PAE-GNRs were employed to deliver plasmid DNA to prostate cancer cells in vitro. PAE-GNRs generated using 1,4C-1,4Bis, a cationic polymer from our laboratory demonstrated significantly higher transgene expression and exhibited lower cytotoxicities when compared to similar assemblies generated using 25 kDa poly(ethylene imine) (PEI25k-GNRs), a current standard for polymer-mediated gene delivery. Additionally, sub-toxic concentrations of 1,4C-1,4Bis-GNR nanoassemblies were employed to deliver expression vectors that express shRNA ('shRNA plasmid') against firefly luciferase gene in order to knock down expression of the protein constitutively expressed in prostate cancer cells. The roles of poly(amino ether) chemistry and zeta-potential in determining transgene expression efficacies of PAE-GNR assemblies were investigated. The theranostic potential of 1,4C-1,4Bis-GNR nanoassemblies was demonstrated using live cell two-photon induced luminescence bioimaging. The PAE class of polymers was also investigated for the one pot synthesis of both gold and silver nanoparticles using a small library poly(amino ethers) derived from linear-like polyamines. Efficient nanoparticle synthesis dependent on concentration of polymers as well as polymer chemical composition is demonstrated. Additionally, the application of poly(amino ether)-gold nanoparticles for transgene delivery is demonstrated in 22Rv1 and MB49 cancer cell lines. Base polymer, 1,4C-1,4Bis and 1,4C-1,4Bis templated and modified gold nanoparticles were compared for transgene delivery efficacies. Differences in morphology and physiochemical properties were investigated as they relate to differences in transgene delivery efficacy. There were found to be minimal differences suggestion that 1,4C-1,4Bis efficacy is not lost following use for nanoparticle modification. These results indicate that poly(amino ether)-gold nanoassemblies are a promising theranostic platform for delivery of therapeutic payloads capable of simultaneous gene silencing and bioimaging.
ContributorsRamos, James (Author) / Rege, Kaushal (Thesis advisor) / Kodibagkar, Vikram (Committee member) / Caplan, Michael (Committee member) / Vernon, Brent (Committee member) / Garcia, Antonio (Committee member) / Arizona State University (Publisher)
Created2014
153194-Thumbnail Image.png
Description
This research reports on the investigation into the synthesis and stabilization of

iron oxide nanoparticles for theranostic applications using amine-epoxide polymers. Although theranostic agents such as magnetic nanoparticles have been designed and developed for a few decades, there is still more work that needs to be done with the type of

This research reports on the investigation into the synthesis and stabilization of

iron oxide nanoparticles for theranostic applications using amine-epoxide polymers. Although theranostic agents such as magnetic nanoparticles have been designed and developed for a few decades, there is still more work that needs to be done with the type of materials that can be used to stabilize or functionalize these particles if they are to be used for applications such as drug delivery, imaging and hyperthermia. For in-vivo applications, it is crucial that organic coatings enclose the nanoparticles in order to prevent aggregation and facilitate efficient removal from the body as well as protect the body from toxic material.

The objective of this thesis is to design polymer coated magnetite nanoparticles with polymers that are biocompatible and can stabilize the iron oxide nanoparticle to help create mono-dispersed particles in solution. It is desirable to also have these nanoparticles possess high magnetic susceptibility in response to an applied magnetic field. The co- precipitation method was selected because it is probably the simplest and most efficient chemical pathway to obtain magnetic nanoparticles.

In literature, cationic polymers such as Polyethylenimine (PEI), which is the industry standard, have been used to stabilize IONPs because they can be used in magnetofections to deliver DNA or RNA. PEI however is known to interact very strongly with proteins and is cytotoxic, so as mentioned previously the Iron Oxide nanoparticles

i

(IONPs) synthesized in this study were stabilized with amine-epoxide polymers because of the limitations of PEI.

Four different amine-epoxide polymers which have good water solubility, biodegradability and less toxic than PEI were synthesized and used in the synthesis and stabilization of the magnetic nanoparticles and compared to PEI templated IONPs. These polymer-templated magnetic nanoparticles were also characterized by size, surface charge, Iron oxide content (ICP analysis) and superconducting quantum interference devices (SQUID) analysis to determine the magnetization values. TEM images were also used to determine the shape and size of the nanoparticles. All this was done in an effort to choose two or three leads that could be used in future work for magnetofections or drug delivery research.
ContributorsTamakloe, Beatrice (Author) / Rege, Kaushal (Thesis advisor) / Kodibagkar, Vikram (Committee member) / Chang, John (Committee member) / Arizona State University (Publisher)
Created2014
150404-Thumbnail Image.png
Description
As the use of engineered nanomaterials (ENMs) in consumer products becomes more common, the amount of ENMs entering wastewater treatment plants (WWTPs) increases. Investigating the fate of ENMs in WWTPs is critical for risk assessment and pollution control. The objectives of this dissertation were to (1) quantify and characterize titanium

As the use of engineered nanomaterials (ENMs) in consumer products becomes more common, the amount of ENMs entering wastewater treatment plants (WWTPs) increases. Investigating the fate of ENMs in WWTPs is critical for risk assessment and pollution control. The objectives of this dissertation were to (1) quantify and characterize titanium (Ti) in full-scale wastewater treatment plants, (2) quantify sorption of different ENMs to wastewater biomass in laboratory-scale batch reactors, (3) evaluate the use of a standard, soluble-pollutant sorption test method for quantifying ENM interaction with wastewater biomass, and (4) develop a mechanistic model of a biological wastewater treatment reactor to serve as the basis for modeling nanomaterial fate in WWTPs. Using titanium (Ti) as a model material for the fate of ENMs in WWTPs, Ti concentrations were measured in 10 municipal WWTPs. Ti concentrations in pant influent ranged from 181 to 3000 µg/L, and more than 96% of Ti was removed, with effluent Ti concentrations being less than 25 µg/L. Ti removed from wastewater accumulated in solids at concentrations ranging from 1 to 6 µg Ti/mg solids. Using transmission electron microscopy, spherical titanium oxide nanoparticles with diameters ranging from 4 to 30 nm were found in WWTP effluents, evidence that some nanoscale particles will pass through WWTPs and enter aquatic systems. Batch experiments were conducted to quantify sorption of different ENM types to activated sludge. Percentages of sorption to 400 mg TSS/L biomass ranged from about 10 to 90%, depending on the ENM material and functionalization. Natural organic matter, surfactants, and proteins had a stabilizing effect on most of the ENMs tested. The United States Environmental Protection Agency's standard sorption testing method (OPPTS 835.1110) used for soluble compounds was found to be inapplicable to ENMs, as freeze-dried activated sludge transforms ENMs into stable particles in suspension. In conjunction with experiments, we created a mechanistic model of the microbiological processes in membrane bioreactors to predict MBR, extended and modified this model to predict the fate of soluble micropollutants, and then discussed how the micropollutant fate model could be used to predict the fate of nanomaterials in wastewater treatment plants.
ContributorsKiser, Mehlika Ayla (Author) / Westerhoff, Paul K (Thesis advisor) / Rittmann, Bruce E. (Committee member) / Hristovski, Kiril D (Committee member) / Arizona State University (Publisher)
Created2011
151240-Thumbnail Image.png
Description
Nanoparticles are ubiquitous in various fields due to their unique properties not seen in similar bulk materials. Among them, core-shell composite nanoparticles are an important class of materials which are attractive for their applications in catalysis, sensing, electromagnetic shielding, drug delivery, and environmental remediation. This dissertation focuses on the study

Nanoparticles are ubiquitous in various fields due to their unique properties not seen in similar bulk materials. Among them, core-shell composite nanoparticles are an important class of materials which are attractive for their applications in catalysis, sensing, electromagnetic shielding, drug delivery, and environmental remediation. This dissertation focuses on the study of core-shell type of nanoparticles where a polymer serves as the core and inorganic nanoparticles are the shell. This is an interesting class of supramolecular building blocks and can "exhibit unusual, possibly unique, properties which cannot be obtained simply by co-mixing polymer and inorganic particles". The one-step Pickering emulsion polymerization method was successfully developed and applied to synthesize polystyrene-silica core-shell composite particles. Possible mechanisms of the Pickering emulsion polymerization were also explored. The silica nanoparticles were thermodynamically favorable to self-assemble at liquid-liquid interfaces at the initial stage of polymerization and remained at the interface to finally form the shells of the composite particles. More importantly, Pickering emulsion polymerization was employed to synthesize polystyrene/poly(N-isopropylacrylamide) (PNIPAAm)-silica core-shell nanoparticles with N-isopropylacrylamide incorporated into the core as a co-monomer. The composite nanoparticles were temperature sensitive and could be up-taken by human prostate cancer cells and demonstrated effectiveness in drug delivery and cancer therapy. Similarly, by incorporating poly-2-(N,N)-dimethylamino)ethyl methacrylate (PDMA) into the core, pH sensitive core-shell composite nanoparticles were synthesized and applied as effective carriers to release a rheological modifier upon a pH change. Finally, the research focuses on facile approaches to engineer the transition of the temperature-sensitive particles and develop composite core-shell nanoparticles with a metallic shell.
ContributorsSanyal, Sriya (Author) / Dai, Lenore L. (Thesis advisor) / Jiang, Hanqing (Committee member) / Lind, Mary L. (Committee member) / Phelan, Patrick (Committee member) / Rege, Kaushal (Committee member) / Arizona State University (Publisher)
Created2012
156062-Thumbnail Image.png
Description
Drinking water filtration using reverse osmosis (RO) membranes effectively removes salts and most other inorganic, organic, and microbial pollutants. RO technologies are utilized at both the municipal and residential scale. The formation of biofilms on RO membranes reduces water flux and increases energy consumption. The research conducted for this thesis

Drinking water filtration using reverse osmosis (RO) membranes effectively removes salts and most other inorganic, organic, and microbial pollutants. RO technologies are utilized at both the municipal and residential scale. The formation of biofilms on RO membranes reduces water flux and increases energy consumption. The research conducted for this thesis involves In-Situ coating of silver, a known biocide, on the surface of RO membranes. This research was adapted from a protocol developed for coating flat sheet membranes with silver nanoparticles, and scaled up into spiral-wound membranes that are commonly used at the residential scale in point-of-use (POU) filtration systems. Performance analyses of the silver-coated spiral-wound were conducted in a mobile drinking water treatment system fitted with two POU units for comparison. Five month-long analyses were performed, including a deployment of the mobile system. In addition to flux, salt rejection, and other water quality analyses, additional membrane characterization tests were conducted on pristine and silver-coated membranes.

For flat sheet membranes coated with silver, the surface charge remained negative and contact angle remained below 90. Scaling up to spiral-wound RO membrane configuration was successful, with an average silver-loading of 1.93 g-Ag/cm2. Results showed the flux of water through the membrane ranged from 8 to 13 liters/m2*hr. (LMH) operating at 25% recovery during long-term of operation. The flux was initially decreased due to the silver coating, but no statistically significant differences were observed after 14 days of operation (P < 0.05). The salt rejection was also not effected due to the silver coating (P < 0.05). While 98% of silver was released during long-term studies, the silver release from the spiral-wound membrane was consistently below the secondary MCL of 100 ppb established by the EPA, and was consistently below 5 ppb after two hours of operation. Microbial assays in the form of heterotrophic plate counts suggested there was no statistically significant difference in the prevention of biofouling formation due to the silver coating (P < 0.05). In addition to performance tests and membrane characterizations, a remote data acquisition system was configured to remotely monitor performance and water quality parameters in the mobile system.
ContributorsZimmerman, Sean (Author) / Westerhoff, Paul K (Thesis advisor) / Sinha, Shahnawaz (Committee member) / Perreault, Francois (Committee member) / Arizona State University (Publisher)
Created2017
156633-Thumbnail Image.png
Description
Nitrate contamination to groundwater and surface water is a serious problem in areas with high agricultural production due to over application of fertilizers. There is a need for alternative technologies to reduce nutrient runoff without compromising yield. Carbon nanoparticles have adsorptive properties and have shown to improve germination and yield

Nitrate contamination to groundwater and surface water is a serious problem in areas with high agricultural production due to over application of fertilizers. There is a need for alternative technologies to reduce nutrient runoff without compromising yield. Carbon nanoparticles have adsorptive properties and have shown to improve germination and yield of a variety of crops. Graphite nanoparticles (CNP) were studied under a variety of different fertilizer conditions to grow lettuce for the three seasons of summer, fall, and winter. The aim of this thesis was to quantify the effect of CNPs on nitrate leaching and lettuce growth. This was accomplished by measuring the lettuce leaf yield, formulating a nutrient balance using the leachate, plant tissue, and soil data, and changing the hydraulic conductivity of the soil to assess the effect on nutrient mobility. summer and fall experiments used Arizona soil with different amounts of nitrogen, phosphorus, and potassium (NPK) fertilizer being applied to the soil with and without CNPs. The winter experiments used three different soil blends of Arizona soil, Arizona soil blended with 30% sand, and Arizona soil blended with 70% sand with a constant fertilizer treatment of 30% NPK with and without CNPs. The results showed that the 70% NPK with CNP treatment was best at reducing the amount of nitrate leached while having little to no compromise in yield. The winter experiments showed that the effectiveness of CNPs in reducing nitrate leaching and enhancing yield, improved with the higher the hydraulic conductivity of the soil.
ContributorsPandorf, Madelyn (Author) / Westerhoff, Paul K (Thesis advisor) / Boyer, Treavor (Committee member) / Perreault, Francois (Committee member) / Arizona State University (Publisher)
Created2018
156706-Thumbnail Image.png
Description
Engineered nanoparticles (NPs) pose risk potentials, if they exist in water systems at significant concentrations and if they remain reactive to cause toxicity. Three goals guided this study: (1) establishing NP detecting methods with high sensitivity to tackle low concentration and small sizes, (2) achieving assays capable of measuring

Engineered nanoparticles (NPs) pose risk potentials, if they exist in water systems at significant concentrations and if they remain reactive to cause toxicity. Three goals guided this study: (1) establishing NP detecting methods with high sensitivity to tackle low concentration and small sizes, (2) achieving assays capable of measuring NP surface reactivity and identifying surface reaction mechanisms, and (3) understanding the impact of surface adsorption of ions on surface reactivity of NPs in water.

The size detection limit of single particle inductively coupled plasma spectrometry (spICP-MS) was determined for 40 elements, demonstrating the feasibility of spICP-MS to different NP species in water. The K-means Clustering Algorithm was used to process the spICP-MS signals, and achieved precise particle-noise differentiation and quantitative particle size resolution. A dry powder assay based on NP-catalyzed methylene blue (MB) reduction was developed to rapidly and sensitively detect metallic NPs in water by measuring their catalytic reactivity.

Four different wet-chemical-based NP surface reactivity assays were demonstrated: “borohydride reducing methylene blue (BHMB)”, “ferric reducing ability of nanoparticles (FRAN)”, “electron paramagnetic resonance detection of hydroxyl radical (EPR)”, and “UV-illuminated methylene blue degradation (UVMB)”. They gave different reactivity ranking among five NP species, because they targeted for different surface reactivity types (catalytic, redox and photo reactivity) via different reaction mechanisms. Kinetic modeling frameworks on the assay outcomes revealed two surface electron transfer schemes, namely the “sacrificial reducing” and the “electrode discharging”, and separated interfering side reactions from the intended surface reaction.

The application of NPs in chemical mechanical polishing (CMP) was investigated as an industrial case to understand NP surface transformation via adsorbing ions in water. Simulation of wastewater treatment showed CMP NPs were effectively removed (>90%) by lime softening at high pH and high calcium dosage, but 20-40% of them remained in water after biomass adsorption process. III/V ions (InIII, GaIII, and AsIII/V) derived from semiconductor materials showed adsorption potentials to common CMP NPs (SiO2, CeO2 and Al2O3), and a surface complexation model was developed to determine their intrinsic complexation constants for different NP species. The adsorption of AsIII and AsV ions onto CeO2 NPs mitigated the surface reactivity of CeO2 NPs suggested by the FRAN and EPR assays. The impact of the ion adsorption on the surface reactivity of CeO2 NPs was related to the redox state of Ce and As on the surface, but varied with ion species and surface reaction mechanisms.
ContributorsBi, Xiangyu (Author) / Westerhoff, Paul K (Thesis advisor) / Rittmann, Bruce E. (Committee member) / Herckes, Pierre (Committee member) / Richert, Ranko (Committee member) / Arizona State University (Publisher)
Created2018
156536-Thumbnail Image.png
Description
New forms of carbon are being discovered at a rapid rate and prove to be on the frontier of cutting edge technology. Carbon possesses three energetically competitive forms of orbital hybridization, leading to exceptional blends of properties unseen in other materials. Fascinating properties found among carbon allotropes, such as, fullerenes,

New forms of carbon are being discovered at a rapid rate and prove to be on the frontier of cutting edge technology. Carbon possesses three energetically competitive forms of orbital hybridization, leading to exceptional blends of properties unseen in other materials. Fascinating properties found among carbon allotropes, such as, fullerenes, carbon nanotubes, and graphene have led to new and exciting advancement, with recent applications in defense, energy storage, construction, and electronics. Various combinations of extreme strength, high electrical and thermal conductivity, flexibility, and light weight have led to new durable and flexible display screens, optoelectronics, quantum computing, and strength enhancer coating. The quest for new carbon allotropes and future application persists.

Despite the advances in carbon-based technology, researchers have been limited to sp3 and sp2 hybridizations. While sp3 and sp2 hybridizations of carbon are well established and understood, the simplest sp1 hybridized carbon allotrope, carbyne, has been impossible to synthesize and remains elusive. This dissertation presents recent results in characterizing a new sp1 carbon material produced from using pulsed laser ablation in liquid (PLAL) to ablate a gold surface that is immersed in a carbon rich liquid. The PLAL technique provides access to extremely non-thermal environmental conditions where unexplored chemical reactions occur and can be explored to access the production of new materials. A combination of experimental and theoretical results suggests gold clusters can act as stabilizing agents as they react and adsorb onto the surface of one dimensional carbon chains to form a new class of materials termed “pseudocarbynes”. Data from several characterization techniques, including Raman spectroscopy, UV/VIS spectroscopy, and transmission electron microscopy (TEM), provide evidence for the existence of pseudocarbyne. This completely new material may possess outstanding properties, a trend seen among carbon allotropes, that can further scientific advancements.
ContributorsFujikado, Nancy (Author) / Sayres, Scott G (Thesis advisor) / Rege, Kaushal (Thesis advisor) / Green, Matthew D (Committee member) / Arizona State University (Publisher)
Created2018
157255-Thumbnail Image.png
Description
Rapid development of new technology has significantly disrupted the way radiotherapy is planned and delivered. These processes involve delivering high radiation doses to the target tumor while minimizing dose to the surrounding healthy tissue. However, with rapid implementation of these new technologies, there is a need for the detection of

Rapid development of new technology has significantly disrupted the way radiotherapy is planned and delivered. These processes involve delivering high radiation doses to the target tumor while minimizing dose to the surrounding healthy tissue. However, with rapid implementation of these new technologies, there is a need for the detection of prescribed ionizing radiation for radioprotection of the patient and quality assurance of the technique employed. Most available clinical sensors are subjected to various limitations including requirement of extensive training, loss of readout with sequential measurements, sensitivity to light and post-irradiation wait time prior to analysis. Considering these disadvantages, there is still a need for a sensor that can be fabricated with ease and still operate effectively in predicting the delivered radiation dose.



The dissertation discusses the development of a sensor that changes color upon exposure to therapeutic levels of ionizing radiation used during routine radiotherapy. The underlying principle behind the sensor is based on the formation of gold nanoparticles from its colorless precursor salt solution upon exposure to ionizing radiation. Exposure to ionizing radiation generates free radicals which reduce ionic gold to its zerovalent gold form which further nucleate and mature into nanoparticles. The generation of these nanoparticles render a change in color from colorless to a maroon/pink depending on the intensity of incident ionizing radiation. The shade and the intensity of the color developed is used to quantitatively and qualitatively predict the prescribed radiation dose.

The dissertation further describes the applicability of sensor to detect a wide range of ionizing radiation including high energy photons, protons, electrons and emissions from radioactive isotopes while remaining insensitive to non-ionizing radiation. The sensor was further augmented with a capability to differentiate regions that are irradiated and non-irradiated in two dimensions. The dissertation further describes the ability of the sensor to predict dose deposition in all three dimensions. The efficacy of the sensor to predict the prescribed dose delivered to canine patients undergoing radiotherapy was also demonstrated. All these taken together demonstrate the potential of this technology to be translatable to the clinic to ensure patient safety during routine radiotherapy.
ContributorsSubramaniam Pushpavanam, Karthik (Author) / Rege, Kaushal (Thesis advisor) / Sapareto, Stephen (Committee member) / Nannenga, Brent (Committee member) / Green, Matthew (Committee member) / Mu, Bin (Committee member) / Arizona State University (Publisher)
Created2019