Matching Items (11)
Filtering by

Clear all filters

152958-Thumbnail Image.png
Description
Gold nanoparticles have emerged as promising nanomaterials for biosensing, imaging, photothermal treatment and therapeutic delivery for several diseases, including cancer. We have generated poly(amino ether)-functionalized gold nanorods (PAE-GNRs) using a layer-by-layer deposition approach. Sub-toxic concentrations of PAE-GNRs were employed to deliver plasmid DNA to prostate cancer cells in vitro. PAE-GNRs

Gold nanoparticles have emerged as promising nanomaterials for biosensing, imaging, photothermal treatment and therapeutic delivery for several diseases, including cancer. We have generated poly(amino ether)-functionalized gold nanorods (PAE-GNRs) using a layer-by-layer deposition approach. Sub-toxic concentrations of PAE-GNRs were employed to deliver plasmid DNA to prostate cancer cells in vitro. PAE-GNRs generated using 1,4C-1,4Bis, a cationic polymer from our laboratory demonstrated significantly higher transgene expression and exhibited lower cytotoxicities when compared to similar assemblies generated using 25 kDa poly(ethylene imine) (PEI25k-GNRs), a current standard for polymer-mediated gene delivery. Additionally, sub-toxic concentrations of 1,4C-1,4Bis-GNR nanoassemblies were employed to deliver expression vectors that express shRNA ('shRNA plasmid') against firefly luciferase gene in order to knock down expression of the protein constitutively expressed in prostate cancer cells. The roles of poly(amino ether) chemistry and zeta-potential in determining transgene expression efficacies of PAE-GNR assemblies were investigated. The theranostic potential of 1,4C-1,4Bis-GNR nanoassemblies was demonstrated using live cell two-photon induced luminescence bioimaging. The PAE class of polymers was also investigated for the one pot synthesis of both gold and silver nanoparticles using a small library poly(amino ethers) derived from linear-like polyamines. Efficient nanoparticle synthesis dependent on concentration of polymers as well as polymer chemical composition is demonstrated. Additionally, the application of poly(amino ether)-gold nanoparticles for transgene delivery is demonstrated in 22Rv1 and MB49 cancer cell lines. Base polymer, 1,4C-1,4Bis and 1,4C-1,4Bis templated and modified gold nanoparticles were compared for transgene delivery efficacies. Differences in morphology and physiochemical properties were investigated as they relate to differences in transgene delivery efficacy. There were found to be minimal differences suggestion that 1,4C-1,4Bis efficacy is not lost following use for nanoparticle modification. These results indicate that poly(amino ether)-gold nanoassemblies are a promising theranostic platform for delivery of therapeutic payloads capable of simultaneous gene silencing and bioimaging.
ContributorsRamos, James (Author) / Rege, Kaushal (Thesis advisor) / Kodibagkar, Vikram (Committee member) / Caplan, Michael (Committee member) / Vernon, Brent (Committee member) / Garcia, Antonio (Committee member) / Arizona State University (Publisher)
Created2014
153194-Thumbnail Image.png
Description
This research reports on the investigation into the synthesis and stabilization of

iron oxide nanoparticles for theranostic applications using amine-epoxide polymers. Although theranostic agents such as magnetic nanoparticles have been designed and developed for a few decades, there is still more work that needs to be done with the type of

This research reports on the investigation into the synthesis and stabilization of

iron oxide nanoparticles for theranostic applications using amine-epoxide polymers. Although theranostic agents such as magnetic nanoparticles have been designed and developed for a few decades, there is still more work that needs to be done with the type of materials that can be used to stabilize or functionalize these particles if they are to be used for applications such as drug delivery, imaging and hyperthermia. For in-vivo applications, it is crucial that organic coatings enclose the nanoparticles in order to prevent aggregation and facilitate efficient removal from the body as well as protect the body from toxic material.

The objective of this thesis is to design polymer coated magnetite nanoparticles with polymers that are biocompatible and can stabilize the iron oxide nanoparticle to help create mono-dispersed particles in solution. It is desirable to also have these nanoparticles possess high magnetic susceptibility in response to an applied magnetic field. The co- precipitation method was selected because it is probably the simplest and most efficient chemical pathway to obtain magnetic nanoparticles.

In literature, cationic polymers such as Polyethylenimine (PEI), which is the industry standard, have been used to stabilize IONPs because they can be used in magnetofections to deliver DNA or RNA. PEI however is known to interact very strongly with proteins and is cytotoxic, so as mentioned previously the Iron Oxide nanoparticles

i

(IONPs) synthesized in this study were stabilized with amine-epoxide polymers because of the limitations of PEI.

Four different amine-epoxide polymers which have good water solubility, biodegradability and less toxic than PEI were synthesized and used in the synthesis and stabilization of the magnetic nanoparticles and compared to PEI templated IONPs. These polymer-templated magnetic nanoparticles were also characterized by size, surface charge, Iron oxide content (ICP analysis) and superconducting quantum interference devices (SQUID) analysis to determine the magnetization values. TEM images were also used to determine the shape and size of the nanoparticles. All this was done in an effort to choose two or three leads that could be used in future work for magnetofections or drug delivery research.
ContributorsTamakloe, Beatrice (Author) / Rege, Kaushal (Thesis advisor) / Kodibagkar, Vikram (Committee member) / Chang, John (Committee member) / Arizona State University (Publisher)
Created2014
150404-Thumbnail Image.png
Description
As the use of engineered nanomaterials (ENMs) in consumer products becomes more common, the amount of ENMs entering wastewater treatment plants (WWTPs) increases. Investigating the fate of ENMs in WWTPs is critical for risk assessment and pollution control. The objectives of this dissertation were to (1) quantify and characterize titanium

As the use of engineered nanomaterials (ENMs) in consumer products becomes more common, the amount of ENMs entering wastewater treatment plants (WWTPs) increases. Investigating the fate of ENMs in WWTPs is critical for risk assessment and pollution control. The objectives of this dissertation were to (1) quantify and characterize titanium (Ti) in full-scale wastewater treatment plants, (2) quantify sorption of different ENMs to wastewater biomass in laboratory-scale batch reactors, (3) evaluate the use of a standard, soluble-pollutant sorption test method for quantifying ENM interaction with wastewater biomass, and (4) develop a mechanistic model of a biological wastewater treatment reactor to serve as the basis for modeling nanomaterial fate in WWTPs. Using titanium (Ti) as a model material for the fate of ENMs in WWTPs, Ti concentrations were measured in 10 municipal WWTPs. Ti concentrations in pant influent ranged from 181 to 3000 µg/L, and more than 96% of Ti was removed, with effluent Ti concentrations being less than 25 µg/L. Ti removed from wastewater accumulated in solids at concentrations ranging from 1 to 6 µg Ti/mg solids. Using transmission electron microscopy, spherical titanium oxide nanoparticles with diameters ranging from 4 to 30 nm were found in WWTP effluents, evidence that some nanoscale particles will pass through WWTPs and enter aquatic systems. Batch experiments were conducted to quantify sorption of different ENM types to activated sludge. Percentages of sorption to 400 mg TSS/L biomass ranged from about 10 to 90%, depending on the ENM material and functionalization. Natural organic matter, surfactants, and proteins had a stabilizing effect on most of the ENMs tested. The United States Environmental Protection Agency's standard sorption testing method (OPPTS 835.1110) used for soluble compounds was found to be inapplicable to ENMs, as freeze-dried activated sludge transforms ENMs into stable particles in suspension. In conjunction with experiments, we created a mechanistic model of the microbiological processes in membrane bioreactors to predict MBR, extended and modified this model to predict the fate of soluble micropollutants, and then discussed how the micropollutant fate model could be used to predict the fate of nanomaterials in wastewater treatment plants.
ContributorsKiser, Mehlika Ayla (Author) / Westerhoff, Paul K (Thesis advisor) / Rittmann, Bruce E. (Committee member) / Hristovski, Kiril D (Committee member) / Arizona State University (Publisher)
Created2011
156062-Thumbnail Image.png
Description
Drinking water filtration using reverse osmosis (RO) membranes effectively removes salts and most other inorganic, organic, and microbial pollutants. RO technologies are utilized at both the municipal and residential scale. The formation of biofilms on RO membranes reduces water flux and increases energy consumption. The research conducted for this thesis

Drinking water filtration using reverse osmosis (RO) membranes effectively removes salts and most other inorganic, organic, and microbial pollutants. RO technologies are utilized at both the municipal and residential scale. The formation of biofilms on RO membranes reduces water flux and increases energy consumption. The research conducted for this thesis involves In-Situ coating of silver, a known biocide, on the surface of RO membranes. This research was adapted from a protocol developed for coating flat sheet membranes with silver nanoparticles, and scaled up into spiral-wound membranes that are commonly used at the residential scale in point-of-use (POU) filtration systems. Performance analyses of the silver-coated spiral-wound were conducted in a mobile drinking water treatment system fitted with two POU units for comparison. Five month-long analyses were performed, including a deployment of the mobile system. In addition to flux, salt rejection, and other water quality analyses, additional membrane characterization tests were conducted on pristine and silver-coated membranes.

For flat sheet membranes coated with silver, the surface charge remained negative and contact angle remained below 90. Scaling up to spiral-wound RO membrane configuration was successful, with an average silver-loading of 1.93 g-Ag/cm2. Results showed the flux of water through the membrane ranged from 8 to 13 liters/m2*hr. (LMH) operating at 25% recovery during long-term of operation. The flux was initially decreased due to the silver coating, but no statistically significant differences were observed after 14 days of operation (P < 0.05). The salt rejection was also not effected due to the silver coating (P < 0.05). While 98% of silver was released during long-term studies, the silver release from the spiral-wound membrane was consistently below the secondary MCL of 100 ppb established by the EPA, and was consistently below 5 ppb after two hours of operation. Microbial assays in the form of heterotrophic plate counts suggested there was no statistically significant difference in the prevention of biofouling formation due to the silver coating (P < 0.05). In addition to performance tests and membrane characterizations, a remote data acquisition system was configured to remotely monitor performance and water quality parameters in the mobile system.
ContributorsZimmerman, Sean (Author) / Westerhoff, Paul K (Thesis advisor) / Sinha, Shahnawaz (Committee member) / Perreault, Francois (Committee member) / Arizona State University (Publisher)
Created2017
156633-Thumbnail Image.png
Description
Nitrate contamination to groundwater and surface water is a serious problem in areas with high agricultural production due to over application of fertilizers. There is a need for alternative technologies to reduce nutrient runoff without compromising yield. Carbon nanoparticles have adsorptive properties and have shown to improve germination and yield

Nitrate contamination to groundwater and surface water is a serious problem in areas with high agricultural production due to over application of fertilizers. There is a need for alternative technologies to reduce nutrient runoff without compromising yield. Carbon nanoparticles have adsorptive properties and have shown to improve germination and yield of a variety of crops. Graphite nanoparticles (CNP) were studied under a variety of different fertilizer conditions to grow lettuce for the three seasons of summer, fall, and winter. The aim of this thesis was to quantify the effect of CNPs on nitrate leaching and lettuce growth. This was accomplished by measuring the lettuce leaf yield, formulating a nutrient balance using the leachate, plant tissue, and soil data, and changing the hydraulic conductivity of the soil to assess the effect on nutrient mobility. summer and fall experiments used Arizona soil with different amounts of nitrogen, phosphorus, and potassium (NPK) fertilizer being applied to the soil with and without CNPs. The winter experiments used three different soil blends of Arizona soil, Arizona soil blended with 30% sand, and Arizona soil blended with 70% sand with a constant fertilizer treatment of 30% NPK with and without CNPs. The results showed that the 70% NPK with CNP treatment was best at reducing the amount of nitrate leached while having little to no compromise in yield. The winter experiments showed that the effectiveness of CNPs in reducing nitrate leaching and enhancing yield, improved with the higher the hydraulic conductivity of the soil.
ContributorsPandorf, Madelyn (Author) / Westerhoff, Paul K (Thesis advisor) / Boyer, Treavor (Committee member) / Perreault, Francois (Committee member) / Arizona State University (Publisher)
Created2018
156706-Thumbnail Image.png
Description
Engineered nanoparticles (NPs) pose risk potentials, if they exist in water systems at significant concentrations and if they remain reactive to cause toxicity. Three goals guided this study: (1) establishing NP detecting methods with high sensitivity to tackle low concentration and small sizes, (2) achieving assays capable of measuring

Engineered nanoparticles (NPs) pose risk potentials, if they exist in water systems at significant concentrations and if they remain reactive to cause toxicity. Three goals guided this study: (1) establishing NP detecting methods with high sensitivity to tackle low concentration and small sizes, (2) achieving assays capable of measuring NP surface reactivity and identifying surface reaction mechanisms, and (3) understanding the impact of surface adsorption of ions on surface reactivity of NPs in water.

The size detection limit of single particle inductively coupled plasma spectrometry (spICP-MS) was determined for 40 elements, demonstrating the feasibility of spICP-MS to different NP species in water. The K-means Clustering Algorithm was used to process the spICP-MS signals, and achieved precise particle-noise differentiation and quantitative particle size resolution. A dry powder assay based on NP-catalyzed methylene blue (MB) reduction was developed to rapidly and sensitively detect metallic NPs in water by measuring their catalytic reactivity.

Four different wet-chemical-based NP surface reactivity assays were demonstrated: “borohydride reducing methylene blue (BHMB)”, “ferric reducing ability of nanoparticles (FRAN)”, “electron paramagnetic resonance detection of hydroxyl radical (EPR)”, and “UV-illuminated methylene blue degradation (UVMB)”. They gave different reactivity ranking among five NP species, because they targeted for different surface reactivity types (catalytic, redox and photo reactivity) via different reaction mechanisms. Kinetic modeling frameworks on the assay outcomes revealed two surface electron transfer schemes, namely the “sacrificial reducing” and the “electrode discharging”, and separated interfering side reactions from the intended surface reaction.

The application of NPs in chemical mechanical polishing (CMP) was investigated as an industrial case to understand NP surface transformation via adsorbing ions in water. Simulation of wastewater treatment showed CMP NPs were effectively removed (>90%) by lime softening at high pH and high calcium dosage, but 20-40% of them remained in water after biomass adsorption process. III/V ions (InIII, GaIII, and AsIII/V) derived from semiconductor materials showed adsorption potentials to common CMP NPs (SiO2, CeO2 and Al2O3), and a surface complexation model was developed to determine their intrinsic complexation constants for different NP species. The adsorption of AsIII and AsV ions onto CeO2 NPs mitigated the surface reactivity of CeO2 NPs suggested by the FRAN and EPR assays. The impact of the ion adsorption on the surface reactivity of CeO2 NPs was related to the redox state of Ce and As on the surface, but varied with ion species and surface reaction mechanisms.
ContributorsBi, Xiangyu (Author) / Westerhoff, Paul K (Thesis advisor) / Rittmann, Bruce E. (Committee member) / Herckes, Pierre (Committee member) / Richert, Ranko (Committee member) / Arizona State University (Publisher)
Created2018
137180-Thumbnail Image.png
Description
The main objective of this research is to develop and characterize a targeted contrast agent that will recognize acute neural injury pathology (i.e. fibrin) after traumatic brain injury (TBI). Single chain fragment variable antibodies (scFv) that bind specifically to fibrin have been produced and purified. DSPE-PEG micelles have been produced

The main objective of this research is to develop and characterize a targeted contrast agent that will recognize acute neural injury pathology (i.e. fibrin) after traumatic brain injury (TBI). Single chain fragment variable antibodies (scFv) that bind specifically to fibrin have been produced and purified. DSPE-PEG micelles have been produced and the scFv has been conjugated to the surface of the micelles; this nanoparticle system will be used to overcome limitations in diagnosing TBI. The binding and imaging properties will be analyzed in the future to determine functionality of the nanoparticle system in vivo.
ContributorsRumbo, Kailey Michelle (Author) / Stabenfeldt, Sarah (Thesis director) / Kodibagkar, Vikram (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137147-Thumbnail Image.png
Description
Smart contrast agents allow for noninvasive study of specific events or tissue conditions inside of a patient's body using Magnetic Resonance Imaging (MRI). This research aims to develop and characterize novel smart contrast agents for MRI that respond to temperature changes in tissue microenvironments. Transmission Electron Microscopy, Nuclear Magnetic Resonance,

Smart contrast agents allow for noninvasive study of specific events or tissue conditions inside of a patient's body using Magnetic Resonance Imaging (MRI). This research aims to develop and characterize novel smart contrast agents for MRI that respond to temperature changes in tissue microenvironments. Transmission Electron Microscopy, Nuclear Magnetic Resonance, and cell culture growth assays were used to characterize the physical, magnetic, and cytotoxic properties of candidate nanoprobes. The nanoprobes displayed thermosensitve MR properties with decreasing relaxivity with temperature. Future work will be focused on generating and characterizing photo-active analogues of the nanoprobes that could be used for both treatment of tissues and assessment of therapy.
ContributorsHussain, Khateeb Hyder (Author) / Kodibagkar, Vikram (Thesis director) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
151453-Thumbnail Image.png
Description
Ionizing radiation, such as gamma rays and X-rays, are becoming more widely used. These high-energy forms of electromagnetic radiation are present in nuclear energy, astrophysics, and the medical field. As more and more people have the opportunity to be exposed to ionizing radiation, the necessity for coming up with simple

Ionizing radiation, such as gamma rays and X-rays, are becoming more widely used. These high-energy forms of electromagnetic radiation are present in nuclear energy, astrophysics, and the medical field. As more and more people have the opportunity to be exposed to ionizing radiation, the necessity for coming up with simple and quick methods of radiation detection is increasing. In this work, two systems were explored for their ability to simply detect ionizing radiation. Gold nanoparticles were formed via radiolysis of water in the presence of Elastin-like polypeptides (ELPs) and also in the presence of cationic polymers. Gold nanoparticle formation is an indicator of the presence of radiation. The system with ELP was split into two subsystems: those samples including isopropyl alcohol (IPA) and acetone, and those without IPA and acetone. The samples were exposed to certain radiation doses and gold nanoparticles were formed. Gold nanoparticle formation was deemed to have occurred when the sample changed color from light yellow to a red or purple color. Nanoparticle formation was also checked by absorbance measurements. In the cationic polymer system, gold nanoparticles were also formed after exposing the experimental system to certain radiation doses. Unique to the polymer system was the ability of some of the cationic polymers to form gold nanoparticles without the samples being irradiated. Future work to be done on this project is further characterization of the gold nanoparticles formed by both systems.
ContributorsWalker, Candace (Author) / Rege, Kaushal (Thesis advisor) / Chang, John (Committee member) / Kodibagkar, Vikram (Committee member) / Potta, Thrimoorthy (Committee member) / Arizona State University (Publisher)
Created2012
135508-Thumbnail Image.png
Description
Neurological disorders are difficult to treat with current drug delivery methods due to their inefficiency and the lack of knowledge of the mechanisms behind drug delivery across the blood brain barrier (BBB). Nanoparticles (NPs) are a promising drug delivery method due to their biocompatibility and ability to be modified by

Neurological disorders are difficult to treat with current drug delivery methods due to their inefficiency and the lack of knowledge of the mechanisms behind drug delivery across the blood brain barrier (BBB). Nanoparticles (NPs) are a promising drug delivery method due to their biocompatibility and ability to be modified by cell penetrating peptides, such as transactivating transciptor (TAT) peptide, which has been shown to increase efficiency of delivery. There are multiple proposed mechanisms of TAT-mediated delivery that also have size restrictions on the molecules that can undergo each BBB crossing mechanism. The effect of nanoparticle size on TAT-mediated delivery in vivo is an important aspect to research in order to better understand the delivery mechanisms and to create more efficient NPs. NPs called FluoSpheres are used because they come in defined diameters unlike polymeric NPs that have a broad distribution of diameters. Both modified and unmodified 100nm and 200nm NPs were able to bypass the BBB and were seen in the brain, spinal cord, liver, and spleen using confocal microscopy and a biodistribution study. Statistically significant differences in delivery rate of the different sized NPs or between TAT-modified and unmodified NPs were not found. Therefore in future work a larger range of diameter size will be evaluated. Also the unmodified NPs will be conjugated with scrambled peptide to ensure that both unmodified and TAT-modified NPs are prepared in identical fashion to better understand the role of size on TAT targeting. Although all the NPs were able to bypass the BBB, future work will hopefully provide a better representation of how NP size effects the rate of TAT-mediated delivery to the CNS.
ContributorsCeton, Ricki Ronea (Author) / Stabenfeldt, Sarah (Thesis director) / Sirianni, Rachael (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05