Matching Items (14)
Filtering by

Clear all filters

154071-Thumbnail Image.png
Description
Environmentally responsive microgels have drawn significant attention due to their intrinsic ability to change volume in response to various external stimuli such as pH, temperature, osmotic pressure, or electric and magnetic fields. The extent of particle swelling is controlled by the nature of the polymer-solvent interaction. This thesis focuses on

Environmentally responsive microgels have drawn significant attention due to their intrinsic ability to change volume in response to various external stimuli such as pH, temperature, osmotic pressure, or electric and magnetic fields. The extent of particle swelling is controlled by the nature of the polymer-solvent interaction. This thesis focuses on design and synthesis of environmentally responsive microgels and their composites, and encompasses methods of utilizing microgel systems in applications as vehicles for the adsorption, retention, and targeted delivery of chemical species. Furthermore, self-assembled microgel particles at ionic liquid (IL)-water interfaces demonstrate responsive colloidal lattice morphology. The thesis first reports on the fundamental aspects of synthesis, functionalization, and characteristic properties of multifunctional environmentally responsive microgels derived from poly(N-isopropylacrylamide) (PNIPAm) and other functional co-monomers. In particular, the uptake and release of active chemical species such as rheology modifiers into and from these ionic microgels is demonstrated. Moreover, a facile tunable method for the formation of organic-inorganic composites with Fe3O4 nanoparticles adsorbed and embedded within ionic microgel particles is explored. Additionally, the development of zwitterionic microgels (ZI-MG) is presented. These aqueous ZI-MG dispersions exhibit reversible parabolic swelling as a function of pH and display a minimum hydrodynamic diameter at a tunable isoelectric point (IEP). This study also elucidates the controlled uptake and release of surfactants from these particle systems. The extent of surfactant loading and the ensuing relative swelling/deswelling behaviors within the polymer networks are explained in terms of their binding interactions. The latter part of this thesis highlights the versatility of fluorescently labeled microgel particles as stabilizers for IL-water droplets. When the prepared particles form monolayers and equilibrate at the liquid-liquid interface, the colloidal lattice organization may re-order itself depending on the surface charge of these particles. Finally, it is shown that the spontaneously formed and densely packed layers of microgel particles can be employed for extraction applications, as the interface remains permeable to small active species.
ContributorsChen, Haobo (Author) / Dai, Lenore L (Committee member) / Chen, Kangping (Committee member) / Forzani, Erica (Committee member) / Lind, Mary Laura (Committee member) / Mu, Bin (Committee member) / Arizona State University (Publisher)
Created2015
157255-Thumbnail Image.png
Description
Rapid development of new technology has significantly disrupted the way radiotherapy is planned and delivered. These processes involve delivering high radiation doses to the target tumor while minimizing dose to the surrounding healthy tissue. However, with rapid implementation of these new technologies, there is a need for the detection of

Rapid development of new technology has significantly disrupted the way radiotherapy is planned and delivered. These processes involve delivering high radiation doses to the target tumor while minimizing dose to the surrounding healthy tissue. However, with rapid implementation of these new technologies, there is a need for the detection of prescribed ionizing radiation for radioprotection of the patient and quality assurance of the technique employed. Most available clinical sensors are subjected to various limitations including requirement of extensive training, loss of readout with sequential measurements, sensitivity to light and post-irradiation wait time prior to analysis. Considering these disadvantages, there is still a need for a sensor that can be fabricated with ease and still operate effectively in predicting the delivered radiation dose.



The dissertation discusses the development of a sensor that changes color upon exposure to therapeutic levels of ionizing radiation used during routine radiotherapy. The underlying principle behind the sensor is based on the formation of gold nanoparticles from its colorless precursor salt solution upon exposure to ionizing radiation. Exposure to ionizing radiation generates free radicals which reduce ionic gold to its zerovalent gold form which further nucleate and mature into nanoparticles. The generation of these nanoparticles render a change in color from colorless to a maroon/pink depending on the intensity of incident ionizing radiation. The shade and the intensity of the color developed is used to quantitatively and qualitatively predict the prescribed radiation dose.

The dissertation further describes the applicability of sensor to detect a wide range of ionizing radiation including high energy photons, protons, electrons and emissions from radioactive isotopes while remaining insensitive to non-ionizing radiation. The sensor was further augmented with a capability to differentiate regions that are irradiated and non-irradiated in two dimensions. The dissertation further describes the ability of the sensor to predict dose deposition in all three dimensions. The efficacy of the sensor to predict the prescribed dose delivered to canine patients undergoing radiotherapy was also demonstrated. All these taken together demonstrate the potential of this technology to be translatable to the clinic to ensure patient safety during routine radiotherapy.
ContributorsSubramaniam Pushpavanam, Karthik (Author) / Rege, Kaushal (Thesis advisor) / Sapareto, Stephen (Committee member) / Nannenga, Brent (Committee member) / Green, Matthew (Committee member) / Mu, Bin (Committee member) / Arizona State University (Publisher)
Created2019
137180-Thumbnail Image.png
Description
The main objective of this research is to develop and characterize a targeted contrast agent that will recognize acute neural injury pathology (i.e. fibrin) after traumatic brain injury (TBI). Single chain fragment variable antibodies (scFv) that bind specifically to fibrin have been produced and purified. DSPE-PEG micelles have been produced

The main objective of this research is to develop and characterize a targeted contrast agent that will recognize acute neural injury pathology (i.e. fibrin) after traumatic brain injury (TBI). Single chain fragment variable antibodies (scFv) that bind specifically to fibrin have been produced and purified. DSPE-PEG micelles have been produced and the scFv has been conjugated to the surface of the micelles; this nanoparticle system will be used to overcome limitations in diagnosing TBI. The binding and imaging properties will be analyzed in the future to determine functionality of the nanoparticle system in vivo.
ContributorsRumbo, Kailey Michelle (Author) / Stabenfeldt, Sarah (Thesis director) / Kodibagkar, Vikram (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137147-Thumbnail Image.png
Description
Smart contrast agents allow for noninvasive study of specific events or tissue conditions inside of a patient's body using Magnetic Resonance Imaging (MRI). This research aims to develop and characterize novel smart contrast agents for MRI that respond to temperature changes in tissue microenvironments. Transmission Electron Microscopy, Nuclear Magnetic Resonance,

Smart contrast agents allow for noninvasive study of specific events or tissue conditions inside of a patient's body using Magnetic Resonance Imaging (MRI). This research aims to develop and characterize novel smart contrast agents for MRI that respond to temperature changes in tissue microenvironments. Transmission Electron Microscopy, Nuclear Magnetic Resonance, and cell culture growth assays were used to characterize the physical, magnetic, and cytotoxic properties of candidate nanoprobes. The nanoprobes displayed thermosensitve MR properties with decreasing relaxivity with temperature. Future work will be focused on generating and characterizing photo-active analogues of the nanoprobes that could be used for both treatment of tissues and assessment of therapy.
ContributorsHussain, Khateeb Hyder (Author) / Kodibagkar, Vikram (Thesis director) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
134647-Thumbnail Image.png
Description
The overall goal of this project is to use metallic nanoparticles to develop a thin, ductile amorphous film at room temperature. Currently bulk metallic glasses are mainly formed via quenching, which requires very high cooling rates to achieve an amorphous molecular structure. These formations often fail in a brittle manner.

The overall goal of this project is to use metallic nanoparticles to develop a thin, ductile amorphous film at room temperature. Currently bulk metallic glasses are mainly formed via quenching, which requires very high cooling rates to achieve an amorphous molecular structure. These formations often fail in a brittle manner. The advantages of using a bottom-up approach with amorphous nanoparticles at ambient conditions is that the ductility of the metal can be improved, and the process will be less energy intensive. The nanoparticles used are iron precursors with ATMP and DTPMP ligand stabilizers and dispersed in methanol. Three forms of experimentation were applied over the course of this project. The first was a simple, preliminary data collection approach where the particles were dispersed onto a glass slide and left to dry under various conditions. The second method was hypersonic particle deposition, which accelerated the particles to high speeds and bombarded onto a glass or silicon substrate. The third method used Langmuir-Blodgett concepts and equipment to make a film. Qualitative analyses were used to determine the efficacy of each approach, including SEM imaging. In the end, none of the approaches proved successful. The first approach showed inconsistencies in the film formation and aggregation of the particles. The results from the hypersonic particle deposition technique showed that not enough particles were deposited to make a consistent film, and many of the particles that were able to be deposited were aggregated. The Langmuir-Blodgett method showed potential, but aggregation of the particles and uneven film formation were challenges here as well. Although there are ways the three discussed experimental approaches could be optimized, the next best step is to try completely new approaches, such as convective assembly and 3D printing to form the ideal nanoparticle film.
ContributorsKline, Katelyn Ann (Author) / Lind, Mary Laura (Thesis director) / Cay, Pinar (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133676-Thumbnail Image.png
Description
Gold nanoparticles are valuable for their distinct properties and nanotechnology applications. Because their properties are controlled in part by nanoparticle size, manipulation of synthesis method is vital, since the chosen synthesis method has a significant effect on nanoparticle size. By aiding mediating synthesis with proteins, unique nanoparticle structures can form,

Gold nanoparticles are valuable for their distinct properties and nanotechnology applications. Because their properties are controlled in part by nanoparticle size, manipulation of synthesis method is vital, since the chosen synthesis method has a significant effect on nanoparticle size. By aiding mediating synthesis with proteins, unique nanoparticle structures can form, which open new possibilities for potential applications. Furthermore, protein-mediated synthesis favors conditions that are more environmentally and biologically friendly than traditional synthesis methods. Thus far, gold particles have been synthesized through mediation with jack bean urease (JBU) and para mercaptobenzoic acid (p-MBA). Nanoparticles synthesized with JBU were 80-90nm diameter in size, while those mediated by p-MBA were revealed by TEM to have a size between 1-3 nm, which was consistent with the expectation based on the black-red color of solution. Future trials will feature replacement of p-MBA by amino acids of similar structure, followed by peptides containing similarly structured amino acids.
ContributorsHathorn, Gregory Michael (Author) / Nannenga, Brent (Thesis director) / Green, Matthew (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134959-Thumbnail Image.png
Description
To compete with fossil fuel electricity generation, there is a need for higher efficiency solar cells to produce renewable energy. Currently, this is the best way to lower generation costs and the price of energy [1]. The goal of this Barrett Honors Thesis is to design an optical coating model

To compete with fossil fuel electricity generation, there is a need for higher efficiency solar cells to produce renewable energy. Currently, this is the best way to lower generation costs and the price of energy [1]. The goal of this Barrett Honors Thesis is to design an optical coating model that has five or fewer layers (with varying thickness and refractive index, within the above range) and that has the maximum reflectance possible between 950 and 1200 nanometers for normally incident light. Manipulating silicon monolayers to become efficient inversion layers to use in solar cells aligns with the Ira. A Fulton Schools of Engineering research themes of energy and sustainability [2]. Silicon monolayers could be specifically designed for different doping substrates. These substrates could range from common-used materials such as boron and phosphorus, to rare-earth doped zinc oxides or even fullerene blends. Exploring how the doping material, and in what quantity, affects solar cell energy output could revolutionize the current production methods and commercial market. If solar cells can be manufactured more economically, yet still retain high efficiency rates, then more people will have access to alternate, "green" energy that does not deplete nonrenewable resources.
ContributorsSanford, Kari Paige (Author) / Holman, Zachary (Thesis director) / Weigand, William (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134977-Thumbnail Image.png
Description
Polymer-nanoparticle composites (PNCs) show improved chemical and physical properties compared to pure polymers. However, nanoparticles dispersed in a polymer matrix tend to aggregate due to strong interparticle interactions. Electrospun nanofibers impregnated with nanoparticles have shown improved dispersion of nanoparticles. Currently, there are few models for quantifying dispersion in a PNC,

Polymer-nanoparticle composites (PNCs) show improved chemical and physical properties compared to pure polymers. However, nanoparticles dispersed in a polymer matrix tend to aggregate due to strong interparticle interactions. Electrospun nanofibers impregnated with nanoparticles have shown improved dispersion of nanoparticles. Currently, there are few models for quantifying dispersion in a PNC, and none for electrospun PNC fibers. A simulation model was developed to quantify the effects of nanoparticle volume loading and fiber to particle diameter ratios on the dispersion in a nanofiber. The dispersion was characterized using the interparticle distance along the fiber. Distributions of the interparticle distance were fit to Weibull distributions and a two-parameter empirical equation for the mean and standard deviation was found. A dispersion factor was defined to quantify the dispersion along the polymer fiber. This model serves as a standard for comparison for future experimental studies through its comparability with microscopy techniques, and as way to quantify and predict dispersion in polymer-nanoparticle electrospinning systems with a single performance metric.
ContributorsBalzer, Christopher James (Author) / Mu, Bin (Thesis director) / Armstrong, Mitchell (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135735-Thumbnail Image.png
Description
One of the grand challenges of engineering is to provide access to clean water because it is predicted that by 2025 more than two thirds of the world’s population will face severe water shortages. To combat this global issue, our lab focuses on creating a novel composite membrane to

One of the grand challenges of engineering is to provide access to clean water because it is predicted that by 2025 more than two thirds of the world’s population will face severe water shortages. To combat this global issue, our lab focuses on creating a novel composite membrane to recover potable water from waste. For use as the water-selective component in this membrane design Linde Type A zeolites were synthesized for optimal size without the use of a template. Current template-free synthesis of zeolite LTA produces particles that are too large for our application therefore the particle size was reduced in this study to reduce fouling of the membrane while also investigating the nanoparticle synthesis mechanisms. The time and temperature of the reaction and the aging of the precursor gel were systematically modified and observed to determine the optimal conditions for producing the particles. Scanning electron microscopy, x-ray diffraction, and energy dispersive x-ray analysis were used for characterization. Sub-micron sized particles were synthesized at 2 weeks aging time at -8°C with an average size of 0.6 micrometers, a size suitable for our membrane. There is a limit to the posterity and uniformity of particles produced from modifying the reaction time and temperature. All results follow general crystallization theory. Longer aging produced smaller particles, consistent with nucleation theory. Spinodal decomposition is predicted to affect nucleation clustering during aging due to the temperature scheme. Efforts will be made to shorten the effective aging time and these particles will eventually be incorporated into our mixed matrix osmosis membrane.
ContributorsKing, Julia Ann (Author) / Lind, Mary Laura (Thesis director) / Durgun, Pinar Cay (Committee member) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135508-Thumbnail Image.png
Description
Neurological disorders are difficult to treat with current drug delivery methods due to their inefficiency and the lack of knowledge of the mechanisms behind drug delivery across the blood brain barrier (BBB). Nanoparticles (NPs) are a promising drug delivery method due to their biocompatibility and ability to be modified by

Neurological disorders are difficult to treat with current drug delivery methods due to their inefficiency and the lack of knowledge of the mechanisms behind drug delivery across the blood brain barrier (BBB). Nanoparticles (NPs) are a promising drug delivery method due to their biocompatibility and ability to be modified by cell penetrating peptides, such as transactivating transciptor (TAT) peptide, which has been shown to increase efficiency of delivery. There are multiple proposed mechanisms of TAT-mediated delivery that also have size restrictions on the molecules that can undergo each BBB crossing mechanism. The effect of nanoparticle size on TAT-mediated delivery in vivo is an important aspect to research in order to better understand the delivery mechanisms and to create more efficient NPs. NPs called FluoSpheres are used because they come in defined diameters unlike polymeric NPs that have a broad distribution of diameters. Both modified and unmodified 100nm and 200nm NPs were able to bypass the BBB and were seen in the brain, spinal cord, liver, and spleen using confocal microscopy and a biodistribution study. Statistically significant differences in delivery rate of the different sized NPs or between TAT-modified and unmodified NPs were not found. Therefore in future work a larger range of diameter size will be evaluated. Also the unmodified NPs will be conjugated with scrambled peptide to ensure that both unmodified and TAT-modified NPs are prepared in identical fashion to better understand the role of size on TAT targeting. Although all the NPs were able to bypass the BBB, future work will hopefully provide a better representation of how NP size effects the rate of TAT-mediated delivery to the CNS.
ContributorsCeton, Ricki Ronea (Author) / Stabenfeldt, Sarah (Thesis director) / Sirianni, Rachael (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05