Matching Items (6)
Filtering by

Clear all filters

152052-Thumbnail Image.png
Description
Microwave (MW), thermal, and ultraviolet (UV) annealing were used to explore the response of Ag structures on a Ge-Se chalcogenide glass (ChG) thin film as flexible radiation sensors, and Te-Ti chalcogenide thin films as a material for diffusion barriers in microelectronics devices and processing of metallized Cu. Flexible resistive radiation

Microwave (MW), thermal, and ultraviolet (UV) annealing were used to explore the response of Ag structures on a Ge-Se chalcogenide glass (ChG) thin film as flexible radiation sensors, and Te-Ti chalcogenide thin films as a material for diffusion barriers in microelectronics devices and processing of metallized Cu. Flexible resistive radiation sensors consisting of Ag electrodes on a Ge20Se80 ChG thin film and polyethylene naphthalate substrate were exposed to UV radiation. The sensors were mounted on PVC tubes of varying radii to induce bending strains and annealed under ambient conditions up to 150 oC. Initial sensor resistance was measured to be ~1012 Ω; after exposure to UV radiation, the resistance was ~104 Ω. Bending strain and low temperature annealing had no significant effect on the resistance of the sensors. Samples of Cu on Te-Ti thin films were annealed in vacuum for up to 30 minutes and were stable up to 500 oC as revealed using Rutherford backscattering spectrometry (RBS) and four-point-probe analysis. X-ray diffractometry (XRD) indicates Cu grain growth up to 500 oC and phase instability of the Te-Ti barrier at 600 oC. MW processing was performed in a 2.45-GHz microwave cavity on Cu/Te-Ti films for up to 30 seconds to induce oxide growth. Using a calibrated pyrometer above the sample, the temperature of the MW process was measured to be below a maximum of 186 oC. Four-point-probe analysis shows an increase in resistance with an increase in MW time. XRD indicates growth of CuO on the sample surface. RBS suggests oxidation throughout the Te-Ti film. Additional samples were exposed to 907 J/cm2 UV radiation in order to ensure other possible electromagnetically induced mechanisms were not active. There were no changes observed using XRD, RBS or four point probing.
ContributorsRoos, Benjamin, 1990- (Author) / Alford, Terry L. (Thesis advisor) / Theodore, David (Committee member) / Kozicki, Michael (Committee member) / Arizona State University (Publisher)
Created2013
153903-Thumbnail Image.png
Description
In the nano-regime many materials exhibit properties that are quite different from their bulk counterparts. These nano-properties have been shown to be useful in a wide range of applications with nanomaterials being used for catalysts, in energy production, as protective coatings, and in medical treatment. While there is no shortage

In the nano-regime many materials exhibit properties that are quite different from their bulk counterparts. These nano-properties have been shown to be useful in a wide range of applications with nanomaterials being used for catalysts, in energy production, as protective coatings, and in medical treatment. While there is no shortage of exciting and novel applications, the world of nanomaterials suffers from a lack of large scale manufacturing techniques. The current methods and equipment used for manufacturing nanomaterials are generally slow, expensive, potentially dangerous, and material specific. The research and widespread use of nanomaterials has undoubtedly been hindered by this lack of appropriate tooling. This work details the effort to create a novel nanomaterial synthesis and deposition platform capable of operating at industrial level rates and reliability.

The tool, referred to as Deppy, deposits material via hypersonic impaction, a two chamber process that takes advantage of compressible fluids operating in the choked flow regime to accelerate particles to up several thousand meters per second before they impact and stick to the substrate. This allows for the energetic separation of the synthesis and deposition processes while still behaving as a continuous flow reactor giving Deppy the unique ability to independently control the particle properties and the deposited film properties. While the ultimate goal is to design a tool capable of producing a broad range of nanomaterial films, this work will showcase Deppy's ability to produce silicon nano-particle films as a proof of concept.

By adjusting parameters in the upstream chamber the particle composition was varied from completely amorphous to highly crystalline as confirmed by Raman spectroscopy. By adjusting parameters in the downstream chamber significant variation of the film's density was achieved. Further it was shown that the system is capable of making these adjustments in each chamber without affecting the operation of the other.
ContributorsFirth, Peter (Author) / Holman, Zachary C (Thesis advisor) / Kozicki, Michael (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2015
155770-Thumbnail Image.png
Description
Nanomaterials exhibit unique properties that are substantially different from their bulk counterparts. These unique properties have gained recognition and application for various fields and products including sensors, displays, photovoltaics, and energy storage devices. Aerosol Deposition (AD) is a relatively new method for depositing nanomaterials. AD utilizes a nozzle to accelerate

Nanomaterials exhibit unique properties that are substantially different from their bulk counterparts. These unique properties have gained recognition and application for various fields and products including sensors, displays, photovoltaics, and energy storage devices. Aerosol Deposition (AD) is a relatively new method for depositing nanomaterials. AD utilizes a nozzle to accelerate the nanomaterial into a deposition chamber under near-vacuum conditions towards a substrate with which the nanomaterial collides and adheres. Traditional methods for designing nozzles at atmospheric conditions are not well suited for nozzle design for AD methods.

Computational Fluid Dynamics (CFD) software, ANSYS Fluent, is utilized to simulate two-phase flows consisting of a carrier gas (Helium) and silicon nanoparticles. The Cunningham Correction Factor is used to account for non-continuous effects at the relatively low pressures utilized in AD.

The nozzle, referred to herein as a boundary layer compensation (BLC) nozzle, comprises an area-ratio which is larger than traditionally designed nozzles to compensate for the thick boundary layer which forms within the viscosity-affected carrier gas flow. As a result, nanoparticles impact the substrate at velocities up to 300 times faster than the baseline nozzle.
ContributorsHoffman, Trent (Author) / Holman, Zachary C (Thesis advisor) / Herrmann, Marcus (Committee member) / Kozicki, Michael (Committee member) / Arizona State University (Publisher)
Created2017
155321-Thumbnail Image.png
Description
Counterfeiting of goods is a widespread epidemic that is affecting the world economy. The conventional labeling techniques are proving inadequate to thwart determined counterfeiters equipped with sophisticated technologies. There is a growing need of a secure labeling that is easy to manufacture and analyze but extremely difficult to copy. Programmable

Counterfeiting of goods is a widespread epidemic that is affecting the world economy. The conventional labeling techniques are proving inadequate to thwart determined counterfeiters equipped with sophisticated technologies. There is a growing need of a secure labeling that is easy to manufacture and analyze but extremely difficult to copy. Programmable metallization cell technology operates on a principle of controllable reduction of a metal ions to an electrodeposit in a solid electrolyte by application of bias. The nature of metallic electrodeposit is unique for each instance of growth, moreover it has a treelike, bifurcating fractal structure with high information capacity. These qualities of the electrodeposit can be exploited to use it as a physical unclonable function. The secure labels made from the electrodeposits grown in radial structure can provide enhanced authentication and protection from counterfeiting and tampering.

So far only microscale radial structures and electrodeposits have been fabricated which limits their use to labeling only high value items due to high cost associated with their fabrication and analysis. Therefore, there is a need for a simple recipe for fabrication of macroscale structure that does not need sophisticated lithography tools and cleanroom environment. Moreover, the growth kinetics and material characteristics of such macroscale electrodeposits need to be investigated. In this thesis, a recipe for fabrication of centimeter scale radial structure for growing Ag electrodeposits using simple fabrication techniques was proposed. Fractal analysis of an electrodeposit suggested information capacity of 1.27 x 1019. The kinetics of growth were investigated by electrical characterization of the full cell and only solid electrolyte at different temperatures. It was found that mass transport of ions is the rate limiting process in the growth. Materials and optical characterization techniques revealed that the subtle relief like structure and consequently distinct optical response of the electrodeposit provides an added layer of security. Thus, the enormous information capacity, ease of fabrication and simplicity of analysis make macroscale fractal electrodeposits grown in radial programmable metallization cells excellent candidates for application as physical unclonable functions.
ContributorsChamele, Ninad (Author) / Kozicki, Michael (Thesis advisor) / Barnaby, Hugh (Thesis advisor) / Newman, Nathan (Committee member) / Arizona State University (Publisher)
Created2017
148445-Thumbnail Image.png
Description

This is a test plan document for Team Aegis' capstone project that has the goal of mitigating single event upsets in NAND flash memory caused by space radiation.

ContributorsForman, Oliver Ethan (Co-author) / Smith, Aiden (Co-author) / Salls, Demetra (Co-author) / Kozicki, Michael (Thesis director) / Hodge, Chris (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
158879-Thumbnail Image.png
Description
Lateral programmable metallization cells (PMC) utilize the properties of electrodeposits grown over a solid electrolyte channel. Such devices have an active anode and an inert cathode separated by a long electrodeposit channel in a coplanar arrangement. The ability to transport large amount of metallic mass across the channel makes these

Lateral programmable metallization cells (PMC) utilize the properties of electrodeposits grown over a solid electrolyte channel. Such devices have an active anode and an inert cathode separated by a long electrodeposit channel in a coplanar arrangement. The ability to transport large amount of metallic mass across the channel makes these devices attractive for various More-Than-Moore applications. Existing literature lacks a comprehensive study of electrodeposit growth kinetics in lateral PMCs. Moreover, the morphology of electrodeposit growth in larger, planar devices is also not understood. Despite the variety of applications, lateral PMCs are not embraced by the semiconductor industry due to incompatible materials and high operating voltages needed for such devices. In this work, a numerical model based on the basic processes in PMCs – cation drift and redox reactions – is proposed, and the effect of various materials parameters on the electrodeposit growth kinetics is reported. The morphology of the electrodeposit growth and kinetics of the electrodeposition process are also studied in devices based on Ag-Ge30Se70 materials system. It was observed that the electrodeposition process mainly consists of two regimes of growth – cation drift limited regime and mixed regime. The electrodeposition starts in cation drift limited regime at low electric fields and transitions into mixed regime as the field increases. The onset of mixed regime can be controlled by applied voltage which also affects the morphology of electrodeposit growth. The numerical model was then used to successfully predict the device kinetics and onset of mixed regime. The problem of materials incompatibility with semiconductor manufacturing was solved by proposing a novel device structure. A bilayer structure using semiconductor foundry friendly materials was suggested as a candidate for solid electrolyte. The bilayer structure consists of a low resistivity oxide shunt layer on top of a high resistivity ion carrying oxide layer. Devices using Cu2O as the low resistivity shunt on top of Cu doped WO3 oxide were fabricated. The bilayer devices provided orders of magnitude improvement in device performance in the context of operating voltage and switching time. Electrical and materials characterization revealed the structure of bilayers and the mechanism of electrodeposition in these devices.
ContributorsChamele, Ninad (Author) / Kozicki, Michael (Thesis advisor) / Barnaby, Hugh (Committee member) / Newman, Nathan (Committee member) / Gonzalez-Velo, Yago (Committee member) / Arizona State University (Publisher)
Created2020