Matching Items (15)
Filtering by

Clear all filters

136509-Thumbnail Image.png
Description
The primary objective of this research project is to develop dual layered polymeric microparticles with a tunable delayed release profile. Poly(L-lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) phase separate in a double emulsion process due to differences in hydrophobicity, which allows for the synthesis of double-walled microparticles with a PLA

The primary objective of this research project is to develop dual layered polymeric microparticles with a tunable delayed release profile. Poly(L-lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) phase separate in a double emulsion process due to differences in hydrophobicity, which allows for the synthesis of double-walled microparticles with a PLA shell surrounding the PLGA core. The microparticles were loaded with bovine serum albumin (BSA) and different volumes of ethanol were added to the PLA shell phase to alter the porosity and release characteristics of the BSA. Different amounts of ethanol varied the total loading percentage of the BSA, the release profile, surface morphology, size distribution, and the localization of the protein within the particles. Scanning electron microscopy images detailed the surface morphology of the different particles. Loading the particles with fluorescently tagged insulin and imaging the particles through confocal microscopy supported the localization of the protein inside the particle. The study suggest that ethanol alters the release characteristics of the loaded BSA encapsulated in the microparticles supporting the use of a polar, protic solvent as a tool for tuning the delayed release profile of biological proteins.
ContributorsFauer, Chase Alexander (Author) / Stabenfeldt, Sarah (Thesis director) / Ankeny, Casey (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
136366-Thumbnail Image.png
Description
One of the most prominent biological challenges for the field of drug delivery is the blood-brain barrier. This physiological system blocks the entry of or actively removes almost all small molecules into the central nervous system (CNS), including many drugs that could be used to treat diseases in the CNS.

One of the most prominent biological challenges for the field of drug delivery is the blood-brain barrier. This physiological system blocks the entry of or actively removes almost all small molecules into the central nervous system (CNS), including many drugs that could be used to treat diseases in the CNS. Previous studies have shown that activation of the adenosine receptor signaling pathway through the use of agonists has been demonstrated to increase BBB permeability. For example, regadenoson is an adenosine A2A receptor agonist that has been shown to disrupt the BBB and allow for increased drug uptake in the CNS. The goal of this study was to verify this property of regadenoson. We hypothesized that co-administration of regadenoson with a non-brain penetrant macromolecule would facilitate its entry into the central nervous system. To test this hypothesis, healthy mice were administered regadenoson or saline concomitantly with a fluorescent dextran solution. The brain tissue was either homogenized to measure quantity of fluorescent molecule, or cryosectioned for imaging with confocal fluorescence microscopy. These experiments did not identify any significant difference in the amount of fluorescence detected in the brain after regadenoson treatment. These results contradict those of previous studies and highlight potential differences in injection methodology, time windows, and properties of brain impermeant molecules.
ContributorsWohlleb, Gregory Michael (Author) / Sirianni, Rachael (Thesis director) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
133170-Thumbnail Image.png
Description
With microspheres growing in popularity as viable systems for targeted drug therapeutics, there exist a host of diseases and pathology induced side effects which could be treated with poly(lactic-co-glycolic acid) [PLGA] microparticle systems [6,10,12]. While PLGA systems are already applied in a wide variety the clinical setting [11], microparticles still

With microspheres growing in popularity as viable systems for targeted drug therapeutics, there exist a host of diseases and pathology induced side effects which could be treated with poly(lactic-co-glycolic acid) [PLGA] microparticle systems [6,10,12]. While PLGA systems are already applied in a wide variety the clinical setting [11], microparticles still have some way to go before they are viable systems for drug delivery. One of the main reasons for this is a lack of fabrication processes and systems which produce monodisperse particles while also being feasible for industrialization [10]. This honors thesis investigates various microparticle fabrication techniques \u2014 two using mechanical agitation and one using fluid dynamics \u2014 with the long term goal of incorporating norepinephrine and adenosine into the particles for metabolic stimulatory purposes. It was found that mechanical agitation processes lead to large values for dispersity and the polydispersity index while fluid dynamics methods have the potential to create more uniform and predictable outcomes. The research concludes by needing further investigation into methods and prototype systems involving fluid dynamics methods; however, these systems yield promising results for fabricating monodisperse particles which have the potential to encapsulate a wide variety of therapeutic drugs.
ContributorsRiley, Levi Louis (Author) / Vernon, Brent (Thesis director) / VanAuker, Michael (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
137180-Thumbnail Image.png
Description
The main objective of this research is to develop and characterize a targeted contrast agent that will recognize acute neural injury pathology (i.e. fibrin) after traumatic brain injury (TBI). Single chain fragment variable antibodies (scFv) that bind specifically to fibrin have been produced and purified. DSPE-PEG micelles have been produced

The main objective of this research is to develop and characterize a targeted contrast agent that will recognize acute neural injury pathology (i.e. fibrin) after traumatic brain injury (TBI). Single chain fragment variable antibodies (scFv) that bind specifically to fibrin have been produced and purified. DSPE-PEG micelles have been produced and the scFv has been conjugated to the surface of the micelles; this nanoparticle system will be used to overcome limitations in diagnosing TBI. The binding and imaging properties will be analyzed in the future to determine functionality of the nanoparticle system in vivo.
ContributorsRumbo, Kailey Michelle (Author) / Stabenfeldt, Sarah (Thesis director) / Kodibagkar, Vikram (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137147-Thumbnail Image.png
Description
Smart contrast agents allow for noninvasive study of specific events or tissue conditions inside of a patient's body using Magnetic Resonance Imaging (MRI). This research aims to develop and characterize novel smart contrast agents for MRI that respond to temperature changes in tissue microenvironments. Transmission Electron Microscopy, Nuclear Magnetic Resonance,

Smart contrast agents allow for noninvasive study of specific events or tissue conditions inside of a patient's body using Magnetic Resonance Imaging (MRI). This research aims to develop and characterize novel smart contrast agents for MRI that respond to temperature changes in tissue microenvironments. Transmission Electron Microscopy, Nuclear Magnetic Resonance, and cell culture growth assays were used to characterize the physical, magnetic, and cytotoxic properties of candidate nanoprobes. The nanoprobes displayed thermosensitve MR properties with decreasing relaxivity with temperature. Future work will be focused on generating and characterizing photo-active analogues of the nanoprobes that could be used for both treatment of tissues and assessment of therapy.
ContributorsHussain, Khateeb Hyder (Author) / Kodibagkar, Vikram (Thesis director) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
Description
The concentration necessary to kill bacterial biofilms with antimicrobials is the minimum biofilm eradication concentration (MBEC). This is usually determined using an in vitro approach and will vary within different strains of bacteria. Biomedical implants produce biofilm-related infections presenting a unique challenge due to the combination of subpopulations of the

The concentration necessary to kill bacterial biofilms with antimicrobials is the minimum biofilm eradication concentration (MBEC). This is usually determined using an in vitro approach and will vary within different strains of bacteria. Biomedical implants produce biofilm-related infections presenting a unique challenge due to the combination of subpopulations of the bacterial community and the polysaccharide matrix presented by biofilms. The purpose of this investigation is to determine how exposure times in the order of weeks to months affect the MBEC. Using an in vitro approach, Staphylococcus aureus (UAMS-1) and methicillin-resistant Staphylococcus aureus (MRSA) biofilms were produced with a 24 hour growth time and exposed to two antimicrobials, tobramycin and vancomycin, and one combination treatment that consisted of 1:1 tobramycin: vancomycin by weight. Crystal violet screening was used in order to ensure the integrity of the biofilm matrix throughout the full time of exposure. It was determined that UAMS-1 MBECs were lowered after 56 days of exposure than after 5 days for all three treatment groups. MRSA MBECs after 5 days of exposure decreased only with in vancomycin treatment group.
ContributorsSteinhauff, Douglas Busch (Author) / Caplan, Michael (Thesis director) / Overstreet, Derek (Committee member) / Castaneda, Paulo (Committee member) / Materials Science and Engineering Program (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135508-Thumbnail Image.png
Description
Neurological disorders are difficult to treat with current drug delivery methods due to their inefficiency and the lack of knowledge of the mechanisms behind drug delivery across the blood brain barrier (BBB). Nanoparticles (NPs) are a promising drug delivery method due to their biocompatibility and ability to be modified by

Neurological disorders are difficult to treat with current drug delivery methods due to their inefficiency and the lack of knowledge of the mechanisms behind drug delivery across the blood brain barrier (BBB). Nanoparticles (NPs) are a promising drug delivery method due to their biocompatibility and ability to be modified by cell penetrating peptides, such as transactivating transciptor (TAT) peptide, which has been shown to increase efficiency of delivery. There are multiple proposed mechanisms of TAT-mediated delivery that also have size restrictions on the molecules that can undergo each BBB crossing mechanism. The effect of nanoparticle size on TAT-mediated delivery in vivo is an important aspect to research in order to better understand the delivery mechanisms and to create more efficient NPs. NPs called FluoSpheres are used because they come in defined diameters unlike polymeric NPs that have a broad distribution of diameters. Both modified and unmodified 100nm and 200nm NPs were able to bypass the BBB and were seen in the brain, spinal cord, liver, and spleen using confocal microscopy and a biodistribution study. Statistically significant differences in delivery rate of the different sized NPs or between TAT-modified and unmodified NPs were not found. Therefore in future work a larger range of diameter size will be evaluated. Also the unmodified NPs will be conjugated with scrambled peptide to ensure that both unmodified and TAT-modified NPs are prepared in identical fashion to better understand the role of size on TAT targeting. Although all the NPs were able to bypass the BBB, future work will hopefully provide a better representation of how NP size effects the rate of TAT-mediated delivery to the CNS.
ContributorsCeton, Ricki Ronea (Author) / Stabenfeldt, Sarah (Thesis director) / Sirianni, Rachael (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

Polymeric nanoparticles (NP) consisting of Poly Lactic-co-lactic acid - methyl polyethylene glycol (PLLA-mPEG) or Poly Lactic-co-Glycolic Acid (PLGA) are an emerging field of study for therapeutic and diagnostic applications. NPs have a variety of tunable physical characteristics like size, morphology, and surface topography. They can be loaded with therapeutic and/or

Polymeric nanoparticles (NP) consisting of Poly Lactic-co-lactic acid - methyl polyethylene glycol (PLLA-mPEG) or Poly Lactic-co-Glycolic Acid (PLGA) are an emerging field of study for therapeutic and diagnostic applications. NPs have a variety of tunable physical characteristics like size, morphology, and surface topography. They can be loaded with therapeutic and/or diagnostic agents, either on the surface or within the core. NP size is an important characteristic as it directly impacts clearance and where the particles can travel and bind in the body. To that end, the typical target size for NPs is 30-200 nm for the majority of applications. Fabricating NPs using the typical techniques such as drop emulsion, microfluidics, or traditional nanoprecipitation can be expensive and may not yield the appropriate particle size. Therefore, a need has emerged for low-cost fabrication methods that allow customization of NP physical characteristics with high reproducibility. In this study we manufactured a low-cost (<$210), open-source syringe pump that can be used in nanoprecipitation. A design of experiments was utilized to find the relationship between the independent variables: polymer concentration (mg/mL), agitation rate of aqueous solution (rpm), and injection rate of the polymer solution (mL/min) and the dependent variables: size (nm), zeta potential, and polydispersity index (PDI). The quarter factorial design consisted of 4 experiments, each of which was manufactured in batches of three. Each sample of each batch was measured three times via dynamic light scattering. The particles were made with PLLA-mPEG dissolved in a 50% dichloromethane and 50% acetone solution. The polymer solution was dispensed into the aqueous solution containing 0.3% polyvinyl alcohol (PVA). Data suggests that none of the factors had a statistically significant effect on NP size. However, all interactions and relationships showed that there was a negative correlation between the above defined input parameters and the NP size. The NP sizes ranged from 276.144 ± 14.710 nm at the largest to 185.611 ± 15.634 nm at the smallest. In conclusion, the low-cost syringe pump nanoprecipitation method can achieve small sizes like the ones reported with drop emulsion or microfluidics. While there are trends suggesting predictable tuning of physical characteristics, significant control over the customization has not yet been achieved.

ContributorsDalal, Dhrasti (Author) / Stabenfeldt, Sarah (Thesis director) / Wang, Kuei-Chun (Committee member) / Flores-Prieto, David (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
Description

Traumatic brain injury (TBI), a neurological condition that negatively affects neural capabilities, occurs when a blunt trauma impacts the head. Following the initial injury that immediately impacts neural cell function and survival, a series of secondary injury events lead to substantial sustained inflammation for weeks to years post-injury. To develo

Traumatic brain injury (TBI), a neurological condition that negatively affects neural capabilities, occurs when a blunt trauma impacts the head. Following the initial injury that immediately impacts neural cell function and survival, a series of secondary injury events lead to substantial sustained inflammation for weeks to years post-injury. To develop TBI treatments that may stimulate regenerative processes, a novel drug delivery system that efficiently delivers the appropriate drug/payload to injured tissue is crucial. Hyaluronic acid (HA) hydrogels are attractive when developing a biomaterial for tissue reparation and regeneration. HA is a natural polymer with physicochemical properties that can be tuned to match the properties of the extracellular matrix (ECM) of the many tissues including the central nervous system (CNS). Here, the project objective was to develop a HA hydrogel system for local delivery of a biological payload; this objective was completed by employing a composite system with two parts. The first part is an injectable, shear-thinning bulk hydrogel, and the second is microgels for loading biological payloads. The bulk hydrogel was composed of cyclodextrin modified HA (Cd-HA) and adamantane modified HA (Ad-HA) that give rise to guest-host interactions that facilitate physical crosslinking. The microgel, composed of norbornene-HA (Nor-HA) and sulfated-HA, crosslink via chemical crosslinks upon activation of a UV photoinitiator. The sulfated-HA microgels facilitate loading of biological payloads by mimicking heparin binding sites via the conjugated sulfated group. Neuregulin I, an epidermal growth factor with neuroprotective properties, is one such protein with a heparin binding domain that may be retained in the sulfated-HA microgels. Specifically, the project focused on mechanical testing of this composite microgel/hydrogel system and also developing protein affinity assays.

ContributorsKylat, Anna (Author) / Stabenfeldt, Sarah (Thesis director) / Holloway, Julianne (Committee member) / Jensen, Gregory (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
131768-Thumbnail Image.png
Description
The aim of the present study was to review the symptoms and current treatment options of the most common skin infections seen in outpatient settings and develop a preliminary alternative treatment solution. The specific skin infections evaluated were those caused by Staphylococcus and Streptococcus bacterial species, and are frequently treated

The aim of the present study was to review the symptoms and current treatment options of the most common skin infections seen in outpatient settings and develop a preliminary alternative treatment solution. The specific skin infections evaluated were those caused by Staphylococcus and Streptococcus bacterial species, and are frequently treated with a wide variety of systemic antibiotics or topical ointments. Systemic antibiotics have shown increased occurrence of adverse side effects as well as the development of antibiotic-resistant bacteria. Additionally, these medications are usually overprescribed, which may further exacerbate negative side effects. Another issue that is addressed is the development of infections following treatment of a new laceration or other trauma to the skin. A patient may be treated for their wound with stitches or another alternative, but there is still the possibility of developing an infection later.
This study synthesizes information found from extensive research and provides a review of the most optimal techniques for developing an alternative to systemic antibiotics. The final deliverable is a report detailing the significant findings and discussing the ways that this solution may be developed further and implemented in a clinical setting. The solution is a hydrogel bandage designed to deliver antibiotics directly to the wound site, while also offering protection and enhanced wound healing. The target population is patients suffering from skin conditions in an outpatient setting. The antibiotics of interest for this solution are clindamycin, doxycycline, and trimethoprim-sulfamethoxazole (co-trimoxazole), as they offer excellent treatment against gram-positive bacteria and methicillin-resistant Staphylococcus aureus. However, other broad-spectrum antibiotics could potentially be incorporated to protect against gram-negative bacteria. The design features a polyvinyl alcohol (PVA) hydrogel that has shown many properties that are beneficial to biomedical applications, including biocompatibility, flexibility, high drug-loading capacity, high absorption of wound exudate, increased promotion of wound healing, and more. Preliminary mathematical models of the hydrogel’s drug delivery behaviors are also included. Due to the scope and timeframe of this project, the majority of findings herein are based on research of prior literature instead of development of the novel device. Future directions would include further research and development of the mechanisms behind the device, creation of a physical prototype, experimental testing, and statistical analyses to verify device specifications and capabilities.
ContributorsTanner, Emily Christine (Author) / Pizziconi, Vincent (Thesis director) / Nguyen, Eric (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05