Matching Items (8)
Filtering by

Clear all filters

151889-Thumbnail Image.png
Description
This dissertation explores the use of bench-scale batch microcosms in remedial design of contaminated aquifers, presents an alternative methodology for conducting such treatability studies, and - from technical, economical, and social perspectives - examines real-world application of this new technology. In situ bioremediation (ISB) is an effective remedial approach for

This dissertation explores the use of bench-scale batch microcosms in remedial design of contaminated aquifers, presents an alternative methodology for conducting such treatability studies, and - from technical, economical, and social perspectives - examines real-world application of this new technology. In situ bioremediation (ISB) is an effective remedial approach for many contaminated groundwater sites. However, site-specific variability necessitates the performance of small-scale treatability studies prior to full-scale implementation. The most common methodology is the batch microcosm, whose potential limitations and suitable technical alternatives are explored in this thesis. In a critical literature review, I discuss how continuous-flow conditions stimulate microbial attachment and biofilm formation, and identify unique microbiological phenomena largely absent in batch bottles, yet potentially relevant to contaminant fate. Following up on this theoretical evaluation, I experimentally produce pyrosequencing data and perform beta diversity analysis to demonstrate that batch and continuous-flow (column) microcosms foster distinctly different microbial communities. Next, I introduce the In Situ Microcosm Array (ISMA), which took approximately two years to design, develop, build and iteratively improve. The ISMA can be deployed down-hole in groundwater monitoring wells of contaminated aquifers for the purpose of autonomously conducting multiple parallel continuous-flow treatability experiments. The ISMA stores all sample generated in the course of each experiment, thereby preventing the release of chemicals into the environment. Detailed results are presented from an ISMA demonstration evaluating ISB for the treatment of hexavalent chromium and trichloroethene. In a technical and economical comparison to batch microcosms, I demonstrate the ISMA is both effective in informing remedial design decisions and cost-competitive. Finally, I report on a participatory technology assessment (pTA) workshop attended by diverse stakeholders of the Phoenix 52nd Street Superfund Site evaluating the ISMA's ability for addressing a real-world problem. In addition to receiving valuable feedback on perceived ISMA limitations, I conclude from the workshop that pTA can facilitate mutual learning even among entrenched stakeholders. In summary, my doctoral research (i) pinpointed limitations of current remedial design approaches, (ii) produced a novel alternative approach, and (iii) demonstrated the technical, economical and social value of this novel remedial design tool, i.e., the In Situ Microcosm Array technology.
ContributorsKalinowski, Tomasz (Author) / Halden, Rolf U. (Thesis advisor) / Johnson, Paul C (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Bennett, Ira (Committee member) / Arizona State University (Publisher)
Created2013
152136-Thumbnail Image.png
Description
Reductive dechlorination by members of the bacterial genus Dehalococcoides is a common and cost-effective avenue for in situ bioremediation of sites contaminated with the chlorinated solvents, trichloroethene (TCE) and perchloroethene (PCE). The overarching goal of my research was to address some of the challenges associated with bioremediation timeframes by improving

Reductive dechlorination by members of the bacterial genus Dehalococcoides is a common and cost-effective avenue for in situ bioremediation of sites contaminated with the chlorinated solvents, trichloroethene (TCE) and perchloroethene (PCE). The overarching goal of my research was to address some of the challenges associated with bioremediation timeframes by improving the rates of reductive dechlorination and the growth of Dehalococcoides in mixed communities. Biostimulation of contaminated sites or microcosms with electron donor fails to consistently promote dechlorination of PCE/TCE beyond cis-dichloroethene (cis-DCE), even when the presence of Dehalococcoides is confirmed. Supported by data from microcosm experiments, I showed that the stalling at cis-DCE is due a H2 competition in which components of the soil or sediment serve as electron acceptors for competing microorganisms. However, once competition was minimized by providing selective enrichment techniques, I illustrated how to obtain both fast rates and high-density Dehalococcoides using three distinct enrichment cultures. Having achieved a heightened awareness of the fierce competition for electron donor, I then identified bicarbonate (HCO3-) as a potential H2 sink for reductive dechlorination. HCO3- is the natural buffer in groundwater but also the electron acceptor for hydrogenotrophic methanogens and homoacetogens, two microbial groups commonly encountered with Dehalococcoides. By testing a range of concentrations in batch experiments, I showed that methanogens are favored at low HCO3 and homoacetogens at high HCO3-. The high HCO3- concentrations increased the H2 demand which negatively affected the rates and extent of dechlorination. By applying the gained knowledge on microbial community management, I ran the first successful continuous stirred-tank reactor (CSTR) at a 3-d hydraulic retention time for cultivation of dechlorinating cultures. I demonstrated that using carefully selected conditions in a CSTR, cultivation of Dehalococcoides at short retention times is feasible, resulting in robust cultures capable of fast dechlorination. Lastly, I provide a systematic insight into the effect of high ammonia on communities involved in dechlorination of chloroethenes. This work documents the potential use of landfill leachate as a substrate for dechlorination and an increased tolerance of Dehalococcoides to high ammonia concentrations (2 g L-1 NH4+-N) without loss of the ability to dechlorinate TCE to ethene.
ContributorsDelgado, Anca Georgiana (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Cadillo-Quiroz, Hinsby (Committee member) / Halden, Rolf U. (Committee member) / Rittmann, Bruce E. (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2013
151669-Thumbnail Image.png
Description
In situ remediation of contaminated aquifers, specifically in situ bioremediation (ISB), has gained popularity over pump-and-treat operations. It represents a more sustainable approach that can also achieve complete mineralization of contaminants in the subsurface. However, the subsurface reality is very complex, characterized by hydrodynamic groundwater movement, geological heterogeneity, and mass-transfer

In situ remediation of contaminated aquifers, specifically in situ bioremediation (ISB), has gained popularity over pump-and-treat operations. It represents a more sustainable approach that can also achieve complete mineralization of contaminants in the subsurface. However, the subsurface reality is very complex, characterized by hydrodynamic groundwater movement, geological heterogeneity, and mass-transfer phenomena governing contaminant transport and bioavailability. These phenomena cannot be properly studied using commonly conducted laboratory batch microcosms lacking realistic representation of the processes named above. Instead, relevant processes are better understood by using flow-through systems (sediment columns). However, flow-through column studies are typically conducted without replicates. Due to additional sources of variability (e.g., flow rate variation between columns and over time), column studies are expected to be less reproducible than simple batch microcosms. This was assessed through a comprehensive statistical analysis of results from multiple batch and column studies. Anaerobic microbial biotransformations of trichloroethene and of perchlorate were chosen as case studies. Results revealed that no statistically significant differences were found between reproducibility of batch and column studies. It has further been recognized that laboratory studies cannot accurately reproduce many phenomena encountered in the field. To overcome this limitation, a down-hole diagnostic device (in situ microcosm array - ISMA) was developed, that enables the autonomous operation of replicate flow-through sediment columns in a realistic aquifer setting. Computer-aided design (CAD), rapid prototyping, and computer numerical control (CNC) machining were used to create a tubular device enabling practitioners to conduct conventional sediment column studies in situ. A case study where two remediation strategies, monitored natural attenuation and bioaugmentation with concomitant biostimulation, were evaluated in the laboratory and in situ at a perchlorate-contaminated site. Findings demonstrate the feasibility of evaluating anaerobic bioremediation in a moderately aerobic aquifer. They further highlight the possibility of mimicking in situ remediation strategies on the small-scale in situ. The ISMA is the first device offering autonomous in situ operation of conventional flow-through sediment microcosms and producing statistically significant data through the use of multiple replicates. With its sustainable approach to treatability testing and data gathering, the ISMA represents a versatile addition to the toolbox of scientists and engineers.
ContributorsMcClellan, Kristin (Author) / Halden, Rolf U. (Thesis advisor) / Johnson, Paul C (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2013
156994-Thumbnail Image.png
Description
This dissertation critically evaluated methodologies and devices for assessing and protecting the health of human populations, with particular emphasis on groundwater remediation and the use of wastewater-based epidemiology (WBE) to inform population health. A meta-analysis and assessment of laboratory-scale treatability studies for removing chlorinated solvents from groundwater found that sediment

This dissertation critically evaluated methodologies and devices for assessing and protecting the health of human populations, with particular emphasis on groundwater remediation and the use of wastewater-based epidemiology (WBE) to inform population health. A meta-analysis and assessment of laboratory-scale treatability studies for removing chlorinated solvents from groundwater found that sediment microcosms operated as continuous-flow columns are preferable to batch bottles when seeking to emulate with high fidelity the complex conditions prevailing in the subsurface in contaminated aquifers (Chapter 2). Compared to monitoring at the field-scale, use of column microcosms also showed (i) improved chemical speciation, and (ii) qualitative predictability of field parameters (Chapter 3). Monitoring of glucocorticoid hormones in wastewater of a university campus showed (i) elevated stress levels particularly at the start of the semester, (ii) on weekdays relative to weekend days (p = 0.05) (161 ± 42 μg d-1 per person, 122 ± 54 μg d-1 per person; p ≤ 0.05), and (iii) a positive association between levels of stress hormones and nicotine (rs: 0.49) and caffeine (0.63) consumption in this student population (Chapter 4). Also, (i) alcohol consumption determined by WBE was in line with literature estimates for this young sub-population (11.3 ± 7.5 g d-1 per person vs. 10.1 ± 0.8 g d-1 per person), whereas caffeine and nicotine uses were below (114 ± 49 g d-1 per person, 178 ± 19 g d-1 per person; 627 ± 219 g d-1 per person, 927 ± 243 g d-1 per person). The introduction of a novel continuous in situ sampler to WBE brought noted benefits relative to traditional time-integrated sampling, including (i) a higher sample coverage (93% vs. 3%), (ii) an ability to captured short-term analyte pulses (e.g., heroin, fentanyl, norbuprenorphine, and methadone), and (iii) an overall higher mass capture for drugs of abuse like morphine, fentanyl, methamphetamine, amphetamine, and the opioid antagonist metabolite norbuprenorphine (p ≤ 0.01). Methods and devices developed in this work are poised to find applications in the remediation sector and in human health assessments.
ContributorsDriver, Erin Michelle (Author) / Halden, Rolf (Thesis advisor) / Conroy-Ben, Otakuye (Committee member) / Kavazanjian, Edward (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2018
157022-Thumbnail Image.png
Description
Widespread use of chlorinated solvents for commercial and industrial purposes makes co-occurring contamination by 1,1,1-trichloroethane (TCA), trichloroethene (TCE), and 1,4-dioxane (1,4-D) a serious problem for groundwater. TCE and TCA often are treated by reductive dechlorination, while 1,4-D resists reductive treatment. Aerobic bacteria are able to oxidize 1,4-D, but

Widespread use of chlorinated solvents for commercial and industrial purposes makes co-occurring contamination by 1,1,1-trichloroethane (TCA), trichloroethene (TCE), and 1,4-dioxane (1,4-D) a serious problem for groundwater. TCE and TCA often are treated by reductive dechlorination, while 1,4-D resists reductive treatment. Aerobic bacteria are able to oxidize 1,4-D, but the biological oxidation of 1,4-D could be inhibited TCA, TCE, and their reductive transformation products. To overcome the challenges from co-occurring contamination, I propose a two-stage synergistic system. First, anaerobic reduction of the chlorinated hydrocarbons takes place in a H2-based hollow-fiber “X-film” (biofilm or catalyst-coated film) reactor (MXfR), where “X-film” can be a “bio-film” (MBfR) or an abiotic “palladium-film” (MPfR). Then, aerobic removal of 1,4-D and other organic compounds takes place in an O2-based MBfR. For the reductive part, I tested reductive bio-dechlorination of TCA and TCE simultaneously in an MBfR. I found that the community of anaerobic bacteria can rapidly reduce TCE to cis-dichloroethene (cis-DCE), but further reductions of cis-DCE to vinyl chloride (VC) and VC to ethene were inhibited by TCA. Also, it took months to grow a strong biofilm that could reduce TCA and TCE. Another problem with reductive dechlorination in the MBfR is that mono-chloroethane (MCA) was not reduced to ethane. In contrast, a film of palladium nano-particles (PdNPs), i.e., an MPfR, could the simultaneous reductions of TCA and TCE to mainly ethane, with only small amounts of intermediates: 1,1-dichloroethane (DCA) (~3% of total influent TCA and TCE) and MCA (~1%) in continuous operation. For aerobic oxidation, I enriched an ethanotrophic culture that could oxidize 1,4-D with ethane as the primary electron donor. An O2-based MBfR, inoculated with the enriched ethanotrophic culture, achieved over 99% 1,4-D removal with ethane as the primary electron donor in continuous operation. Finally, I evaluated two-stage treatment with a H2-based MPfR followed by an O2-MBfR. The two-stage system gave complete removal of TCA, TCE, and 1,4-D in continuous operation.
ContributorsLuo, Yihao (Author) / Rittmann, Bruce E. (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Zhou, Chen (Committee member) / Arizona State University (Publisher)
Created2018
134050-Thumbnail Image.png
Description
The effect of an anaerobic reductive environment produced by the oxidation of zero valent iron (ZVI) on the microbial reductive dechlorination of trichloroethylene and its applicability to in-situ bioremediation processes was investigated using microcosms and soil column studies. I learned that microbial dechlorination requires a highly reductive environment, as represented

The effect of an anaerobic reductive environment produced by the oxidation of zero valent iron (ZVI) on the microbial reductive dechlorination of trichloroethylene and its applicability to in-situ bioremediation processes was investigated using microcosms and soil column studies. I learned that microbial dechlorination requires a highly reductive environment, as represented by negative values for oxidation-reduction potential (ORP), which can be maintained through the addition of reducing agents such as ZVI, or to a lesser extent, the fermentation of added substrates such as lactate. Microcosm conditions represented distance from an in-situ treatment injection well and contained different types of iron species and dechlorinating bioaugmentation cultures. Diminishing efficacy of microbial reductive dechlorination along a gradient away from the injection zone was observed, characterized by increasing ORP and decreasing pH. Results also suggested that the use of particular biostimulation substrates is key to prioritizing the dechlorination reaction against competing microbial and abiotic processes by supplying electrons needed for microbial dechlorination.
ContributorsMouti, Aatikah (Author) / Krajmalnik-Brown, Rosa (Thesis director) / Delgado, Anca (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
155811-Thumbnail Image.png
Description
The advantages and challenges of combining zero-valent iron (ZVI) and microbial reduction of trichloroethene (TCE) and perchlorate (ClO4-) in contaminated soil and groundwater are not well understood. The objective of this work was to identify the benefits and limitations of simultaneous application of ZVI and bioaugmentation for detoxification of TCE

The advantages and challenges of combining zero-valent iron (ZVI) and microbial reduction of trichloroethene (TCE) and perchlorate (ClO4-) in contaminated soil and groundwater are not well understood. The objective of this work was to identify the benefits and limitations of simultaneous application of ZVI and bioaugmentation for detoxification of TCE and ClO4- using conditions relevant to a specific contaminated site. We studied conditions representing a ZVI-injection zone and a downstream zone influenced Fe (II) produced, for simultaneous ZVI and microbial reductive dechlorination applications using bench scale semi-batch microcosm experiments. 16.5 g L-1 ZVI effectively reduced TCE to ethene and ethane but ClO4- was barely reduced. Microbial reductive dechlorination was limited by both ZVI as well as Fe (II) derived from oxidation of ZVI. In the case of TCE, rapid abiotic TCE reduction made the TCE unavailable for the dechlorinating bacteria. In the case of perchlorate, ZVI inhibited the indigenous perchlorate-reducing bacteria present in the soil and groundwater. Further, H2 generated by ZVI reactions stimulated competing microbial processes like sulfate reduction and methanogenesis. In the microcosms representing the ZVI downstream zone (Fe (II) only), we detected accumulation of cis-dichloroethene (cis-DCE) and vinyl chloride (VC) after 56 days. Some ethene also formed under these conditions. In the absence of ZVI or Fe (II), we detected complete TCE dechlorination to ethene and faster rates of ClO4- reduction. The results illustrate potential limitations of combining ZVI with microbial reduction of chlorinated compounds and show the potential that each technology has when applied separately.
ContributorsMohana Rangan, Srivatsan (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Delgado, Anca G (Committee member) / Lowry, Gregory V. (Committee member) / Arizona State University (Publisher)
Created2017
151393-Thumbnail Image.png
Description
DehaloR^2 is a previously characterized, trichloroethene (TCE)-dechlorinating culture and contains bacteria from the known dechlorinating genus, Dehalococcoides. DehaloR^2 was exposed to three anthropogenic contaminants, Triclocarban (TCC), tris(2-chloroethyl) phosphate (TCEP), and 1,1,1-trichloroethane (TCA) and two biogenic-like halogenated compounds, 2,6-dibromophenol (2,6-DBP) and 2,6-dichlorophenol (2,6-DCP). The effects on TCE dechlorination ability due to

DehaloR^2 is a previously characterized, trichloroethene (TCE)-dechlorinating culture and contains bacteria from the known dechlorinating genus, Dehalococcoides. DehaloR^2 was exposed to three anthropogenic contaminants, Triclocarban (TCC), tris(2-chloroethyl) phosphate (TCEP), and 1,1,1-trichloroethane (TCA) and two biogenic-like halogenated compounds, 2,6-dibromophenol (2,6-DBP) and 2,6-dichlorophenol (2,6-DCP). The effects on TCE dechlorination ability due to 2,6-DBP and 2,6-DCP exposures were also investigated. DehaloR^2 did not dechlorinate TCC or TCEP. After initial exposure to TCA, half of the initial TCA was dechlorinated to 1,1-dichloroethane (DCA), however half of the TCA remained by day 100. Subsequent TCA and TCE re-exposure showed no reductive dechlorination activity for both TCA and TCE by 120 days after the re-exposure. It has been hypothesized that the microbial TCE-dechlorinating ability was developed before TCE became abundant in groundwater. This dechlorinating ability would have existed in the microbial metabolism due to previous exposure to biogenic halogenated compounds. After observing the inability of DehaloR^2 to dechlorinate other anthropogenic compounds, DehaloR^2 was then exposed to two naturally occurring halogenated phenols, 2,6-DBP and 2,6-DCP, in the presence and absence of TCE. DehaloR^2 debrominated 2,6-DBP through the intermediate 2-bromophenol (2-BP) to the end product phenol faster in the presence of TCE. DehaloR^2 dechlorinated 2,6-DCP to 2-CP in the absence of TCE; however, 2,6-DCP dechlorination was incomplete in the presence of TCE. Additionally, when 2,6-DBP was present, complete TCE dechlorination to ethene occurred more quickly than when TCE was present without 2,6-DBP. However, when 2,6-DCP was present, TCE dechlorination to ethene had not completed by day 55. The increased dehalogenation rate of 2,6-DBP and TCE when present together compared to conditions containing only 2,6-DBP or only TCE suggests a possible synergistic relationship between 2,6-DBP and TCE, while the decreased dechlorination rate of 2,6-DCP and TCE when present together compared to conditions containing only 2,6-DCP or only TCE suggests an inhibitory effect.
ContributorsKegerreis, Kylie (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Halden, Rolf U. (Committee member) / Torres, César I (Committee member) / Arizona State University (Publisher)
Created2012