Matching Items (4)
Filtering by

Clear all filters

187746-Thumbnail Image.png
Description
While most household surfactants are biodegradable in aerobic conditions, their presence in a microbiological treatment process can lead to the proliferation of antimicrobial-resistance genes (ARG) in bacteria, such as Pseudomonas aeruginosa. Surfactants can be cationic, anionic, or zwitterionic, and these different classes may have different effects on the proliferation

While most household surfactants are biodegradable in aerobic conditions, their presence in a microbiological treatment process can lead to the proliferation of antimicrobial-resistance genes (ARG) in bacteria, such as Pseudomonas aeruginosa. Surfactants can be cationic, anionic, or zwitterionic, and these different classes may have different effects on the proliferation of ARG. This study evaluated how the three classes of surfactants affected the microbial community’s structure and ARG in O2-based membrane biofilm reactors (O2-MBfRs) that provided at least 98% surfactant removal. Cationic cetrimonium bromide (CTAB) had by far the strongest impact with highest ARG abundance in the biofilm. In particular, Pseudomonas and Stenotrophomonas, the two main genera in the biofilm treating CTAB, were highly correlated to the abundance of ARG for efflux pumps and antibiotic inactivation. CTAB also promoted potential of horizontal gene transfer (HGT) of ARG. Combining results from the metabolome and metagenome identified four possible pathways for CTAB biodegradation. Of special important is a new pathway: β-carbon oxidation of CTAB to produce betaine. An insufficient nitrogen source could lead to irreversible ARB and ARG enrichment in the MBfR biofilm. Finally, a two-stage O2-MBfR successfully removed a high concentration (730 mg/L) of CTAB: Partial CTAB removal in the Lead reactor relieved inhibition in the Lag reactor. Metagenomic analysis also revealed that the Lag reactor was enriched in genes for CTAB and metabolite oxygenation.
ContributorsZheng, Chenwei (Author) / Rittmann, Bruce (Thesis advisor) / Delgado, Anca (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Lai, Yen-Jung (Committee member) / Arizona State University (Publisher)
Created2023
157813-Thumbnail Image.png
Description
This study reports on the treatment of ammunition wastewater containing RDX (1,3,5-Trinitro-1,3,5-triazinane), HMX (1,3,5,7-Tetranitro-1,3,5,7-tetrazoctane), and the oxyanion co-contaminants nitrate (NO3-) and perchlorate (ClO4-) in a membrane biofilm reactor (MBfR), a Palladium (Pd)-coated MBfR (Pd-MBfR), and an abiotic Pd-coated film reactor (Pd-film reactor). A consortium of nitrate- and perchlorate-reducing bacteria,

This study reports on the treatment of ammunition wastewater containing RDX (1,3,5-Trinitro-1,3,5-triazinane), HMX (1,3,5,7-Tetranitro-1,3,5,7-tetrazoctane), and the oxyanion co-contaminants nitrate (NO3-) and perchlorate (ClO4-) in a membrane biofilm reactor (MBfR), a Palladium (Pd)-coated MBfR (Pd-MBfR), and an abiotic Pd-coated film reactor (Pd-film reactor). A consortium of nitrate- and perchlorate-reducing bacteria, continuously fed with synesthetic ammunition wastewater featuring 4 mM nitrate and 0.1-2 mM perchlorate, formed robust biofilms on the membrane surfaces in the MBfR and Pd-MBfR. PdNPs with diameter 4-5-nm auto-assembled and stabilized on the surfaces of membrane and biofilm in MPfR and Pd-MBfR. Nitrate and perchlorate were rapidly reduced by the biofilms in the MBfR and Pd-MBfR, but they were not catalytically reduced through PdNPs alone in the MPfR. In contrast, RDX or HMX was recalcitrant to enzymatic degradation in MBfR, but was rapidly reduced through Pd-catalytic denitration in the MPfR and Pd-MBfR to form ‒N‒NHOH or ‒N‒H. Based on the experimental results, the synergistic coupling of Pd-based catalysis and microbial activity in the Pd-MBfR should be a viable new technology for treating ammunition wastewater.
ContributorsZheng, Chenwei (Author) / Rittmann, Bruce (Thesis advisor) / Delgado, Anca (Committee member) / Lai, Yen-Jung (Committee member) / Arizona State University (Publisher)
Created2019
157739-Thumbnail Image.png
Description
The study was to analyze the extent of bacterial transport in a two-dimensional tank under saturated conditions. The experiments were done in a 2-D tank packed with 3,700 in3 of fine grained, homogenous, chemically inert sand under saturated conditions. The tank used for transport was decontaminated by backwashing with 0.6%

The study was to analyze the extent of bacterial transport in a two-dimensional tank under saturated conditions. The experiments were done in a 2-D tank packed with 3,700 in3 of fine grained, homogenous, chemically inert sand under saturated conditions. The tank used for transport was decontaminated by backwashing with 0.6% chlorine solution with subsequent backwashing with chlorine-neutral water (tap water and Na2S2O3) thus ensuring no residual chlorine in the tank. The transport of bacteria was measured using samples collected from ports at vertical distances of 5, 15 and 25 inches (12.7, 38.1 and 63.5 cm) from the surface of the sand on both sides for the 2-D tank. An influent concentration of 105 CFU/mL was set as a baseline for both microbes and the percolation rate was set at 11.37 inches/day using a peristaltic pump at the bottom outlet. At depths of 5, 15 and 25 inches, E. coli breakthroughs were recorded at 5, 17 and 28 hours for the ports on the right side and 7, 17 and 29 hours for the ports on the left sides, respectively. At respective distances Legionella breakthroughs were recorded at 8, 22 and 35 hours for the ports on the right side and 9, 24, 36 hours for the ports on the left side, respectively which is homologous to its pleomorphic nature. A tracer test was done and the visual breakthroughs were recorded at the same depths as the microbes. The breakthroughs for the dye at depths of 5, 15 and 25 inches, were recorded at 13.5, 41 and 67 hours for the ports on the right side and 15, 42.5 and 69 hours for the ports on the left side, respectively. However, these are based on visual estimates and the physical breakthrough could have happened at the respective heights before the reported times. This study provided a good basis for the premise that transport of bacterial cells and chemicals exists under recharge practices.
ContributorsMondal, Indrayudh (Author) / Abbaszadegan, Morteza (Thesis advisor) / Dahlen, Paul (Committee member) / Delgado, Anca (Committee member) / Arizona State University (Publisher)
Created2019
168764-Thumbnail Image.png
Description
Nutrient rich agricultural runoff is a major source of phosphorus (P) and nitrogen (N) loading to surface waters, resulting in eutrophication and harmful algal blooms. The most effective nutrient removal technologies often have cost, land, or operational requirements that limits use in the decentralized areas that need it most. This

Nutrient rich agricultural runoff is a major source of phosphorus (P) and nitrogen (N) loading to surface waters, resulting in eutrophication and harmful algal blooms. The most effective nutrient removal technologies often have cost, land, or operational requirements that limits use in the decentralized areas that need it most. This dissertation investigated combined physical-chemical and microbiological technologies for combined P and N removal from nonpoint sources. Chapter 2 investigated the combination of basic oxygen furnace (BOF) steel slag and woody mulch for P removal by mineral precipitation and N removal by microbial denitrification. When combined with mulch in column experiments, slag with high fines content achieved complete P removal under unsaturated conditions. Batch experiments showed that microbial denitrification occurred under the highly alkaline conditions created by steel slag, but the timescale differential between P and N removal was a critical barrier to combining these treatment technologies. Chapter 3 evaluated a field-scale slag filter to treat agricultural tile drainage and lab-scale column experiments to provide insight on field conditions that impacted P removal. Increases in alkalinity had negative influences on P removal through inhibition of P mineral precipitation by BOF slag, while blast furnace (BF) steel slag was less impacted by alkalinity due to primarily adsorptive P removal. Regeneration strategies were identified based on water quality and slag type.Chapters 4 and 5 explored biological ion exchange (BIEX) as an option for addressing the timescale offset identified in Chapter 1. In Chapter 4 columns fed with dissolved organic matter (DOM) were not regenerated and over 50% DOM removal was observed, with the primary mechanism of removal identified as secondary ion exchange (SIEX) between sulfate and DOM fractions with high affinities for ion exchange. Chapter 5 aimed to expand BIEX to N treatment through batch denitrification and adsorption experiments, which revealed a positive relationship between molecular weight of organic molecules and their ability to displace nitrate. This work shows that by having an improved understanding of impacted water characteristics, the information presented in this work can be used to select and implement effective treatment technologies for decentralized areas.
ContributorsEdgar, Michael Garrett (Author) / Boyer, Treavor H (Thesis advisor) / Hamdan, Nasser (Committee member) / Delgado, Anca (Committee member) / Arizona State University (Publisher)
Created2022