Matching Items (13)
Filtering by

Clear all filters

151951-Thumbnail Image.png
Description
The consumption of feedstocks from agriculture and forestry by current biofuel production has raised concerns about food security and land availability. In the meantime, intensive human activities have created a large amount of marginal lands that require management. This study investigated the viability of aligning land management with biofuel production

The consumption of feedstocks from agriculture and forestry by current biofuel production has raised concerns about food security and land availability. In the meantime, intensive human activities have created a large amount of marginal lands that require management. This study investigated the viability of aligning land management with biofuel production on marginal lands. Biofuel crop production on two types of marginal lands, namely urban vacant lots and abandoned mine lands (AMLs), were assessed. The investigation of biofuel production on urban marginal land was carried out in Pittsburgh between 2008 and 2011, using the sunflower gardens developed by a Pittsburgh non-profit as an example. Results showed that the crops from urban marginal lands were safe for biofuel. The crop yield was 20% of that on agricultural land while the low input agriculture was used in crop cultivation. The energy balance analysis demonstrated that the sunflower gardens could produce a net energy return even at the current low yield. Biofuel production on AML was assessed from experiments conducted in a greenhouse for sunflower, soybean, corn, canola and camelina. The research successfully created an industrial symbiosis by using bauxite as soil amendment to enable plant growth on very acidic mine refuse. Phytoremediation and soil amendments were found to be able to effectively reduce contamination in the AML and its runoff. Results from this research supported that biofuel production on marginal lands could be a unique and feasible option for cultivating biofuel feedstocks.
ContributorsZhao, Xi (Author) / Landis, Amy (Thesis advisor) / Fox, Peter (Committee member) / Chester, Mikhail (Committee member) / Arizona State University (Publisher)
Created2013
150317-Thumbnail Image.png
Description
To address sustainability issues in wastewater treatment (WWT), Siemens Water Technologies (SWT) has designed a "hybrid" process that couples common activated sludge (AS) and anaerobic digestion (AD) technologies with the novel concepts of AD sludge recycle and biosorption. At least 85% of the hybrid's AD sludge is recycled to the

To address sustainability issues in wastewater treatment (WWT), Siemens Water Technologies (SWT) has designed a "hybrid" process that couples common activated sludge (AS) and anaerobic digestion (AD) technologies with the novel concepts of AD sludge recycle and biosorption. At least 85% of the hybrid's AD sludge is recycled to the AS process, providing additional sorbent for influent particulate chemical oxygen demand (PCOD) biosorption in contact tanks. Biosorbed PCOD is transported to the AD, where it is converted to methane. The aim of this study is to provide mass balance and microbial community analysis (MCA) of SWT's two hybrid and one conventional pilot plant trains and mathematical modeling of the hybrid process including a novel model of biosorption. A detailed mass balance was performed on each tank and the overall system. The mass balance data supports the hybrid process is more sustainable: It produces 1.5 to 5.5x more methane and 50 to 83% less sludge than the conventional train. The hybrid's superior performance is driven by 4 to 8 times longer solid retention times (SRTs) as compared to conventional trains. However, the conversion of influent COD to methane was low at 15 to 22%, and neither train exhibited significant nitrification or denitrification. Data were inconclusive as to the role of biosorption in the processes. MCA indicated the presence of Archaea and nitrifiers throughout both systems. However, it is inconclusive as to how active Archaea and nitrifiers are under anoxic, aerobic, and anaerobic conditions. Mathematical modeling confirms the hybrid process produces 4 to 20 times more methane and 20 to 83% less sludge than the conventional train under various operating conditions. Neither process removes more than 25% of the influent nitrogen or converts more that 13% to nitrogen gas due to biomass washout in the contact tank and short SRTs in the stabilization tank. In addition, a mathematical relationship was developed to describe PCOD biosorption through adsorption to biomass and floc entrapment. Ultimately, process performance is more heavily influenced by the higher AD SRTs attained when sludge is recycled through the system and less influenced by the inclusion of biosorption kinetics.
ContributorsYoung, Michelle Nichole (Author) / Rittmann, Bruce E. (Thesis advisor) / Fox, Peter (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2011
150037-Thumbnail Image.png
Description
Intimate coupling of Ti2 photocatalysis and biodegradation (ICPB) offers potential for degrading biorecalcitrant and toxic organic compounds much better than possible with conventional wastewater treatments. This study reports on using a novel sponge-type, Ti2-coated biofilm carrier that shows significant adherence of Ti2 to its exterior and the ability to accumulate

Intimate coupling of Ti2 photocatalysis and biodegradation (ICPB) offers potential for degrading biorecalcitrant and toxic organic compounds much better than possible with conventional wastewater treatments. This study reports on using a novel sponge-type, Ti2-coated biofilm carrier that shows significant adherence of Ti2 to its exterior and the ability to accumulate biomass in its interior (protected from UV light and free radicals). First, this carrier was tested for ICPB in a continuous-flow photocatalytic circulating-bed biofilm reactor (PCBBR) to mineralize biorecalcitrant organic: 2,4,5-trichlorophenol (TCP). Four mechanisms possibly acting of ICPB were tested separately: TCP adsorption, UV photolysis/photocatalysis, and biodegradation. The carrier exhibited strong TCP adsorption, while photolysis was negligible. Photocatalysis produced TCP-degradation products that could be mineralized and the strong adsorption of TCP to the carrier enhanced biodegradation by relieving toxicity. Validating the ICPB concept, biofilm was protected inside the carriers from UV light and free radicals. ICPB significantly lowered the diversity of the bacterial community, but five genera known to biodegrade chlorinated phenols were markedly enriched. Secondly, decolorization and mineralization of reactive dyes by ICPB were investigated on a refined Ti2-coated biofilm carrier in a PCBBR. Two typical reactive dyes: Reactive Black 5 (RB5) and Reactive Yellow 86 (RY86), showed similar first-order kinetics when being photocatalytically decolorized at low pH (~4-5), which was inhibited at neutral pH in the presence of phosphate or carbonate buffer, presumably due to electrostatic repulsion from negatively charged surface sites on Ti2, radical scavenging by phosphate or carbonate, or both. In the PCBBR, photocatalysis alone with Ti2-coated carriers could remove RB5 and COD by 97% and 47%, respectively. Addition of biofilm inside macroporous carriers maintained a similar RB5 removal efficiency, but COD removal increased to 65%, which is evidence of ICPB despite the low pH. A proposed ICPB pathway for RB5 suggests that a major intermediate, a naphthol derivative, was responsible for most of the residual COD. Finally, three low-temperature sintering methods, called O, D and DN, were compared based on photocatalytic efficiency and Ti2 adherence. The DN method had the best Ti2-coating properties and was a successful carrier for ICPB of RB5 in a PCBBR.
ContributorsLi, Guozheng (Author) / Rittmann, Bruce E. (Thesis advisor) / Halden, Rolf (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2011
Description
Carbon capture and sequestration (CCS) is one of the important mitigation options for climate change. Numerous technologies to capture carbon dioxide (CO2) are in development but currently, capture using amines is the predominant technology. When the flue gas reacts with amines (Monoethanaloamine) the CO2 is absorbed into the solution and

Carbon capture and sequestration (CCS) is one of the important mitigation options for climate change. Numerous technologies to capture carbon dioxide (CO2) are in development but currently, capture using amines is the predominant technology. When the flue gas reacts with amines (Monoethanaloamine) the CO2 is absorbed into the solution and forms an intermediate product which then releases CO2 at higher temperature. The high temperature necessary to strip CO2 is provided by steam extracted from the powerplant thus reducing the net output of the powerplant by 25% to 35%. The reduction in electricity output for the same input of coal increases the emissions factor of Nitrogen Oxides, Mercury, Particulate matter, Ammonia, Volatile organic compounds for the same unit of electricity produced. The thesis questions if this tradeoff between CO2 and other emissions is beneficial or not. Three different methodologies, Life Cycle Assessment, Valuation models and cost benefit analysis are used to identify if there is a net benefit to the society on implementation of CCS to a Pulverized coal powerplant. These methodologies include the benefits due to reduction of CO2 and the disbenefits due to the increase of other emissions. The life cycle assessment using ecoindicator'99 methodology shows the CCS is not beneficial under Hierarchical and Egalitarian perspective. The valuation model shows that the inclusion of the other emissions reduces the benefit associated with CCS. For a lower CO2 price the valuation model shows that CCS is detrimental to the environment. The cost benefit analysis shows that a CO2 price of at least $80/tCO2 is required for the cost benefit ratio to be 1. The methodology integrates Montecarlo simulation to characterize the uncertainties associated with the valuation models.
ContributorsSekar, Ashok (Author) / Williams, Eric (Thesis advisor) / Chester, Mikhail (Thesis advisor) / Allenby, Braden (Committee member) / Arizona State University (Publisher)
Created2012
150904-Thumbnail Image.png
Description
Ecolabels are the main driving force of consumer knowledge in the realm of sustainable product purchasing. While ecolabels strive to improve consumer's purchasing decisions, they have overwhelmed the market, leaving consumers confused and distrustful of what each label means. This study attempts to validate and understand environmental concerns commonly found

Ecolabels are the main driving force of consumer knowledge in the realm of sustainable product purchasing. While ecolabels strive to improve consumer's purchasing decisions, they have overwhelmed the market, leaving consumers confused and distrustful of what each label means. This study attempts to validate and understand environmental concerns commonly found in ecolabel criteria and the implications they have within the life cycle of a product. A life cycle assessment (LCA) case study of cosmetic products is used in comparison with current ecolabel program criteria to assess whether or not ecolabels are effectively driving environmental improvements in high impact areas throughout the life cycle of a product. Focus is placed on determining the general issues addressed by ecolabelling criteria and how these issues relate to hotspots derived through a practiced scientific methodology. Through this analysis, it was determined that a majority the top performing supply chain environmental impacts are covered, in some fashion, within ecolabelling criteria, but some, such as agricultural land occupation, are covered to a lesser extent or not at all. Additional criteria are suggested to fill the gaps found in ecolabelling programs and better address the environmental impacts most pertinent to the supply chain. Ecolabels have also been found to have a broader coverage then what can currently be addressed using LCA. The results of this analysis have led to a set of recommendations for furthering the integration between ecolabels and life cycle tools.
ContributorsBernardo, Melissa (Author) / Dooley, Kevin (Thesis advisor) / Chester, Mikhail (Thesis advisor) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2012
154162-Thumbnail Image.png
Description
This study reports on benzene and toluene biodegradation under different dissolved oxygen conditions, and the goal of this study is to evaluate and model their removal.

Benzene and toluene were tested for obligate anaerobic degradation in batch reactors with sulfate as the electron acceptor. A group of sulfate-reducing bacteria capable

This study reports on benzene and toluene biodegradation under different dissolved oxygen conditions, and the goal of this study is to evaluate and model their removal.

Benzene and toluene were tested for obligate anaerobic degradation in batch reactors with sulfate as the electron acceptor. A group of sulfate-reducing bacteria capable of toluene degradation was enriched after 252 days of incubation. Those cultures, originated from anaerobic digester, were able to degrade toluene coupled to sulfate reduction with benzene coexistence, while they were not able to utilize benzene. Methanogens also were present, although their contribution to toluene biodegradation was not defined.

Aerobic biodegradation of benzene and toluene by Pseudomonas putida F1 occurred, and biomass production lagged behind substrate loss and continued after complete substrate removal. This pattern suggests that biodegradation of intermediates, rather than direct benzene and toluene transformation, caused bacterial growth. Supporting this explanation is that the calculated biomass growth from a two-step model basically fit the experimental biomass results during benzene and toluene degradation with depleted dissolved oxygen.

Catechol was tested for anaerobic biodegradation in batch experiments and in a column study. Sulfate- and nitrate-reducing bacteria enriched from a wastewater treatment plant hardly degraded catechol within 20 days. However, an inoculum from a contaminated site was able to remove 90% of the initial 16.5 mg/L catechol, and Chemical Oxygen Demand was oxidized in parallel. Catechol biodegradation was inhibited when nitrite accumulated, presumably by a toxic catechol-nitrite complex.

The membrane biofilm reactor (MBfR) offers the potential for biodegrading benzene in a linked aerobic and anaerobic pathway by controlling the O2 delivery. At an average benzene surface loading of 1.3 g/m2-day and an average hydraulic retention time of 2.2 day, an MBfR supplied with pure O2 successfully achieved 99% benzene removal at steady state. A lower oxygen partial pressure led to decreased benzene removal, and nitrate removal increased, indicating multiple mechanisms, including oxygenation and nitrate reduction, were involved in the system being responsible for benzene removal. Microbial community analysis indicated that Comamonadaceae, a known aerobic benzene-degrader and denitrifier, dominated the biofilm at the end of operation.
ContributorsLiu, Zhuolin (Author) / Rittmann, Bruce E. (Thesis advisor) / Krajmalnik-Brown, Rosa (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2015
157022-Thumbnail Image.png
Description
Widespread use of chlorinated solvents for commercial and industrial purposes makes co-occurring contamination by 1,1,1-trichloroethane (TCA), trichloroethene (TCE), and 1,4-dioxane (1,4-D) a serious problem for groundwater. TCE and TCA often are treated by reductive dechlorination, while 1,4-D resists reductive treatment. Aerobic bacteria are able to oxidize 1,4-D, but

Widespread use of chlorinated solvents for commercial and industrial purposes makes co-occurring contamination by 1,1,1-trichloroethane (TCA), trichloroethene (TCE), and 1,4-dioxane (1,4-D) a serious problem for groundwater. TCE and TCA often are treated by reductive dechlorination, while 1,4-D resists reductive treatment. Aerobic bacteria are able to oxidize 1,4-D, but the biological oxidation of 1,4-D could be inhibited TCA, TCE, and their reductive transformation products. To overcome the challenges from co-occurring contamination, I propose a two-stage synergistic system. First, anaerobic reduction of the chlorinated hydrocarbons takes place in a H2-based hollow-fiber “X-film” (biofilm or catalyst-coated film) reactor (MXfR), where “X-film” can be a “bio-film” (MBfR) or an abiotic “palladium-film” (MPfR). Then, aerobic removal of 1,4-D and other organic compounds takes place in an O2-based MBfR. For the reductive part, I tested reductive bio-dechlorination of TCA and TCE simultaneously in an MBfR. I found that the community of anaerobic bacteria can rapidly reduce TCE to cis-dichloroethene (cis-DCE), but further reductions of cis-DCE to vinyl chloride (VC) and VC to ethene were inhibited by TCA. Also, it took months to grow a strong biofilm that could reduce TCA and TCE. Another problem with reductive dechlorination in the MBfR is that mono-chloroethane (MCA) was not reduced to ethane. In contrast, a film of palladium nano-particles (PdNPs), i.e., an MPfR, could the simultaneous reductions of TCA and TCE to mainly ethane, with only small amounts of intermediates: 1,1-dichloroethane (DCA) (~3% of total influent TCA and TCE) and MCA (~1%) in continuous operation. For aerobic oxidation, I enriched an ethanotrophic culture that could oxidize 1,4-D with ethane as the primary electron donor. An O2-based MBfR, inoculated with the enriched ethanotrophic culture, achieved over 99% 1,4-D removal with ethane as the primary electron donor in continuous operation. Finally, I evaluated two-stage treatment with a H2-based MPfR followed by an O2-MBfR. The two-stage system gave complete removal of TCA, TCE, and 1,4-D in continuous operation.
ContributorsLuo, Yihao (Author) / Rittmann, Bruce E. (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Zhou, Chen (Committee member) / Arizona State University (Publisher)
Created2018
154683-Thumbnail Image.png
Description
The application of microalgal biofilms in wastewater treatment has great advantages such as abolishing the need for energy intensive aerators and recovering nutrients as energy, thus reducing the energy requirement of wastewater treatment several-fold. A 162 cm2 algal biofilm reactor with good wastewater treatment performance and a regular harvesting procedure

The application of microalgal biofilms in wastewater treatment has great advantages such as abolishing the need for energy intensive aerators and recovering nutrients as energy, thus reducing the energy requirement of wastewater treatment several-fold. A 162 cm2 algal biofilm reactor with good wastewater treatment performance and a regular harvesting procedure was studied at lab scale to gain an understanding of effectual parameters such as hydraulic retention time (HRT; 2.6 and 1.3 hrs), liquid level (LL; 0.5 and 1.0 cm), and solids retention time (SRT; 3 and 1.5 wks). A revised synthetic wastewater “Syntho 3.7” was used as a surrogate of domestic primary effluent for nutrient concentration consistency in the feed lines. In the base case (2.6 hr HRT, 0.5 cm LL, and 3 wk SRT), percent removals of 69 ± 2 for total nitrogen (TN), 54 ± 21 for total phosphorous (TP), and 60 ± 7 for chemical oxygen demand (COD) were achieved and 4.0 ± 1.6 g/m2/d dry biomass was produced. A diffusion limitation was encountered when increasing the liquid level, while the potential to further decrease the HRT remains. Nonlinear growth kinetics was observed in comparing SRT variations, and promoting autotrophic growth seems possible. Future work will look towards producing a mathematical model and further testing the aptness of this system for large-scale implementation.
ContributorsHalloum, Ibrahim (Author) / Torres, César I (Thesis advisor) / Popat, Sudeep C (Committee member) / Rittmann, Bruce E. (Committee member) / Arizona State University (Publisher)
Created2016
151583-Thumbnail Image.png
Description
Healthcare infection control has led to increased utilization of disposable medical devices, which has subsequently led to increased adverse environmental effects attributed to healthcare and its supply chain. In dental practice, the dental bur is a commonly used instrument that can either be reused or used once and then disposed.

Healthcare infection control has led to increased utilization of disposable medical devices, which has subsequently led to increased adverse environmental effects attributed to healthcare and its supply chain. In dental practice, the dental bur is a commonly used instrument that can either be reused or used once and then disposed. To evaluate the disparities in environmental impacts of disposable and reusable dental burs, a comparative life cycle assessment (LCA) was performed. The comparative LCA evaluated a reusable dental bur (specifically, a 2.00mm Internal Irrigation Pilot Drill) reused 30 instances versus 30 identical burs used as disposables. The LCA methodology was performed using framework described by the International Organization for Standardization (ISO) 14040 series. Sensitivity analyses were performed with respect to ultrasonic and autoclave loading. Findings from this research showed that when the ultrasonic and autoclave are loaded optimally, reusable burs had 40% less of an environmental impact than burs used on a disposable basis. When the ultrasonic and autoclave were loaded to 66% capacity, there was an environmental breakeven point between disposable and reusable burs. Eutrophication, carcinogenic impacts, non-carcinogenic impacts, and acidification were limited when cleaning equipment (i.e., ultrasonic and autoclave) were optimally loaded. Additionally, the bur's packaging materials contributed more negative environmental impacts than the production and use of the bur itself. Therefore, less materially-intensive packaging should be used. Specifically, the glass fiber reinforced plastic casing should be substituted for a material with a reduced environmental footprint.
ContributorsUnger, Scott (Author) / Landis, Amy (Thesis advisor) / Wilson, Natalia (Committee member) / Chester, Mikhail (Committee member) / Arizona State University (Publisher)
Created2013
187673-Thumbnail Image.png
Description
Life Cycle Assessment (LCA) results are typically presented using default visualization and communication approaches without acknowledging: the goals of the end-user, the end-user’s level of knowledge in LCA, the qualitative explanation supporting the visual, and the uncertainty in the process. The motivating hypothesis of this research is that the way

Life Cycle Assessment (LCA) results are typically presented using default visualization and communication approaches without acknowledging: the goals of the end-user, the end-user’s level of knowledge in LCA, the qualitative explanation supporting the visual, and the uncertainty in the process. The motivating hypothesis of this research is that the way practitioners communicate and visualize LCA results poses a risk to the interpretations of the end-users, especially when the goal of the study is not of focus when designing the visuals. Different LCA goals, whether it is for comparisons, hotspot identifications, or environmental declarations, require different visualization designs. To test this, studies were conducted with a variety of participants by giving them several visual representations of LCA results and asking them to share their interpretations of them. The participants’ interpretations of each visual were compared to the opinions of a panel of LCA experts and to the author’s intended use of it. This research gives insight on where misalignments or enhancements in the interpretation of results can occur based on the visual representations used in a certain goal category and the other factors previously mentioned. The results also provided three more key findings: 1) The majority of visuals that accurately presented and communicated the results were in the same goal category that the authors intended the visuals to be used for, suggesting that visuals are more effective when designed with the goal of the study in mind. 2) Several visuals suggested misconceptions in the presentation of results which included a misconception of the participants, a misconception of the authors, or a misconception between all groups. 3) None of the visuals in the environmental declarations category received a consensus from the panel of experts that they were well-suited for that purpose which suggests a significant research gap in accurately visualizing results for these purposes. These results aided the development of guidance documents to suggest both what to consider and what to avoid based on the goal of the study. The findings from this study can assist in bridging the gap in communication between the practitioner and the end-user.
ContributorsGuglielmi, Giovanni (Author) / Seager, Thomas (Thesis advisor) / Chester, Mikhail (Committee member) / Prado, Valentina (Committee member) / Arizona State University (Publisher)
Created2023