Matching Items (28)
Filtering by

Clear all filters

152110-Thumbnail Image.png
Description
In a laboratory setting, the soil volume change behavior is best represented by using various testing standards on undisturbed or remolded samples. Whenever possible, it is most precise to use undisturbed samples to assess the volume change behavior but in the absence of undisturbed specimens, remodeled samples can be used.

In a laboratory setting, the soil volume change behavior is best represented by using various testing standards on undisturbed or remolded samples. Whenever possible, it is most precise to use undisturbed samples to assess the volume change behavior but in the absence of undisturbed specimens, remodeled samples can be used. If that is the case, the soil is compacted to in-situ density and water content (or matric suction), which should best represent the expansive profile in question. It is standard practice to subject the specimen to a wetting process at a particular net normal stress. Even though currently accepted laboratory testing standard procedures provide insight on how the profile conditions changes with time, these procedures do not assess the long term effects on the soil due to climatic changes. In this experimental study, an assessment and quantification of the effect of multiple wetting/drying cycles on the volume change behavior of two different naturally occurring soils was performed. The changes in wetting and drying cycles were extreme when comparing the swings in matric suction. During the drying cycle, the expansive soil was subjected to extreme conditions, which decreased the moisture content less than the shrinkage limit. Nevertheless, both soils were remolded at five different compacted conditions and loaded to five different net normal stresses. Each sample was subjected to six wetting and drying cycles. During the assessment, it was evident from the results that the swell/collapse strain is highly non-linear at low stress levels. The strain-net normal stress relationship cannot be defined by one single function without transforming the data. Therefore, the dataset needs to be fitted to a bi-modal logarithmic function or to a logarithmic transformation of net normal stress in order to use a third order polynomial fit. It was also determined that the moisture content changes with time are best fit by non-linear functions. For the drying cycle, the radial strain was determined to have a constant rate of change with respect to the axial strain. However, for the wetting cycle, there was not enough radial strain data to develop correlations and therefore, an assumption was made based on 55 different test measurements/observations, for the wetting cycles. In general, it was observed that after each subsequent cycle, higher swelling was exhibited for lower net normal stress values; while higher collapse potential was observed for higher net normal stress values, once the net normal stress was less than/greater than a threshold net normal stress value. Furthermore, the swelling pressure underwent a reduction in all cases. Particularly, the Anthem soil exhibited a reduction in swelling pressure by at least 20 percent after the first wetting/drying cycle; while Colorado soil exhibited a reduction of 50 percent. After about the fourth cycle, the swelling pressure seemed to stabilized to an equilibrium value at which a reduction of 46 percent was observed for the Anthem soil and 68 percent reduction for the Colorado soil. The impact of the initial compacted conditions on heave characteristics was studied. Results indicated that materials compacted at higher densities exhibited greater swell potential. When comparing specimens compacted at the same density but at different moisture content (matric suction), it was observed that specimens compacted at higher suction would exhibit higher swelling potential, when subjected to the same net normal stress. The least amount of swelling strain was observed on specimens compacted at the lowest dry density and the lowest matric suction (higher water content). The results from the laboratory testing were used to develop ultimate heave profiles for both soils. This analysis showed that even though the swell pressure for each soil decreased with cycles, the amount of heave would increase or decrease depending upon the initial compaction condition. When the specimen was compacted at 110% of optimum moisture content and 90% of maximum dry density, it resulted in an ultimate heave reduction of 92 percent for Anthem and 685 percent for Colorado soil. On the other hand, when the soils were compacted at 90% optimum moisture content and 100% of the maximum dry density, Anthem specimens heave 78% more and Colorado specimens heave was reduced by 69%. Based on the results obtained, it is evident that the current methods to estimate heave and swelling pressure do not consider the effect of wetting/drying cycles; and seem to fail capturing the free swell potential of the soil. Recommendations for improvement current methods of practice are provided.
ContributorsRosenbalm, Daniel Curtis (Author) / Zapata, Claudia E (Thesis advisor) / Houston, Sandra L. (Committee member) / Kavazanjian, Edward (Committee member) / Witczak, Mathew W (Committee member) / Arizona State University (Publisher)
Created2013
151506-Thumbnail Image.png
Description
Microbially induced calcium carbonate precipitation (MICP) is attracting increasing attention as a sustainable means of soil improvement. While there are several possible MICP mechanisms, microbial denitrification has the potential to become one of the preferred methods for MICP because complete denitrification does not produce toxic byproducts, readily occurs under anoxic

Microbially induced calcium carbonate precipitation (MICP) is attracting increasing attention as a sustainable means of soil improvement. While there are several possible MICP mechanisms, microbial denitrification has the potential to become one of the preferred methods for MICP because complete denitrification does not produce toxic byproducts, readily occurs under anoxic conditions, and potentially has a greater carbonate yield per mole of organic electron donor than other MICP processes. Denitrification may be preferable to ureolytic hydrolysis, the MICP process explored most extensively to date, as the byproduct of denitrification is benign nitrogen gas, while the chemical pathways involved in hydrolytic ureolysis processes produce undesirable and potentially toxic byproducts such as ammonium (NH4+). This thesis focuses on bacterial denitrification and presents preliminary results of bench-scale laboratory experiments on denitrification as a candidate calcium carbonate precipitation mechanism. The bench-scale bioreactor and column tests, conducted using the facultative anaerobic bacterium Pseudomonas denitrificans, show that calcite can be precipitated from calcium-rich pore water using denitrification. Experiments also explore the potential for reducing environmental impacts and lowering costs associated with denitrification by reducing the total dissolved solids in the reactors and columns, optimizing the chemical matrix, and addressing the loss of free calcium in the form of calcium phosphate precipitate from the pore fluid. The potential for using MICP to sequester radionuclides and metal contaminants that are migrating in groundwater is also investigated. In the sequestration process, divalent cations and radionuclides are incorporated into the calcite structure via substitution, forming low-strontium calcium carbonate minerals that resist dissolution at a level similar to that of calcite. Work by others using the bacterium Sporosarcina pasteurii has suggested that in-situ sequestration of radionuclides and metal contaminants can be achieved through MICP via hydrolytic ureolysis. MICP through bacterial denitrification seems particularly promising as a means for sequestering radionuclides and metal contaminants in anoxic environments due to the anaerobic nature of the process and the ubiquity of denitrifying bacteria in the subsurface.
ContributorsHamdan, Nasser (Author) / Kavazanjian, Edward (Thesis advisor) / Rittmann, Bruce E. (Thesis advisor) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2013
152596-Thumbnail Image.png
Description
This thesis presents a probabilistic evaluation of multiple laterally loaded drilled pier foundation design approaches using extensive data from a geotechnical investigation for a high voltage electric transmission line. A series of Monte Carlo simulations provide insight about the computed level of reliability considering site standard penetration test blow count

This thesis presents a probabilistic evaluation of multiple laterally loaded drilled pier foundation design approaches using extensive data from a geotechnical investigation for a high voltage electric transmission line. A series of Monte Carlo simulations provide insight about the computed level of reliability considering site standard penetration test blow count value variability alone (i.e., assuming all other aspects of the design problem do not contribute error or bias). Evaluated methods include Eurocode 7 Geotechnical Design procedures, the Federal Highway Administration drilled shaft LRFD design method, the Electric Power Research Institute transmission foundation design procedure and a site specific variability based approach previously suggested by the author of this thesis and others. The analysis method is defined by three phases: a) Evaluate the spatial variability of an existing subsurface database. b) Derive theoretical foundation designs from the database in accordance with the various design methods identified. c) Conduct Monti Carlo Simulations to compute the reliability of the theoretical foundation designs. Over several decades, reliability-based foundation design (RBD) methods have been developed and implemented to varying degrees for buildings, bridges, electric systems and other structures. In recent years, an effort has been made by researchers, professional societies and other standard-developing organizations to publish design guidelines, manuals and standards concerning RBD for foundations. Most of these approaches rely on statistical methods for quantifying load and resistance probability distribution functions with defined reliability levels. However, each varies with regard to the influence of site-specific variability on resistance. An examination of the influence of site-specific variability is required to provide direction for incorporating the concept into practical RBD design methods. Recent surveys of transmission line engineers by the Electric Power Research Institute (EPRI) demonstrate RBD methods for the design of transmission line foundations have not been widely adopted. In the absence of a unifying design document with established reliability goals, transmission line foundations have historically performed very well, with relatively few failures. However, such a track record with no set reliability goals suggests, at least in some cases, a financial premium has likely been paid.
ContributorsHeim, Zackary (Author) / Houston, Sandra (Thesis advisor) / Witczak, Matthew (Committee member) / Kavazanjian, Edward (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2014
152650-Thumbnail Image.png
Description
Hydrocarbon spill site cleanup is challenging when contaminants are present in lower permeability layers. These are difficult to remediate and may result in long-term groundwater impacts. The research goal is to investigate strategies for long-term reduction of contaminant emissions from sources in low permeability layers through partial source treatment at

Hydrocarbon spill site cleanup is challenging when contaminants are present in lower permeability layers. These are difficult to remediate and may result in long-term groundwater impacts. The research goal is to investigate strategies for long-term reduction of contaminant emissions from sources in low permeability layers through partial source treatment at higher/lower permeability interfaces. Conceptually, this provides a clean/reduced concentration zone near the interface, and consequently a reduced concentration gradient and flux from the lower permeability layer. Treatment by in-situ chemical oxidation (ISCO) was evaluated using hydrogen peroxide (H2O2) and sodium persulfate (Na2S2O8). H2O2 studies included lab and field-scale distribution studies and lab emission reduction experiments. The reaction rate of H2O2 in soils was so fast it did not travel far (<1 m) from delivery points under typical flow conditions. Oxygen gas generated and partially trapped in soil pores served as a dissolved oxygen (DO) source for >60 days in field and lab studies. During that period, the laboratory studies had reduced hydrocarbon impacts, presumably from aerobic biodegradation, which rebounded once the O2 source depleted. Therefore field monitoring should extend beyond the post-treatment elevated DO. Na2S2O8 use was studied in two-dimensional tanks (122-cm tall, 122-cm wide, and 5-cm thick) containing two contrasting permeability layers (three orders of magnitude difference). The lower permeability layer initially contained a dissolved-sorbed contaminant source throughout this layer, or a 10-cm thick non-aqueous phase liquid (NAPL)-impacted zone below the higher/lower permeability interface. The dissolved-sorbed source tank was actively treated for 14 d. Two hundred days after treatment, the emission reduction of benzene, toluene, ethylbenzene, and p-xylene (BTEX) were 95-99% and methyl tert-butyl ether (MTBE) was 63%. The LNAPL-source tank had three Na2S2O8 and two sodium hydroxide (NaOH) applications for S2O82- base activation. The resulting emission reductions for BTEX, n-propylbenzene, and 1,3,5 trymethylbenzene were 55-73%. While less effective at reducing emissions from LNAPL sources, the 14-d treatment delivered sufficient S2O82- though diffusion to remediate BTEX from the 60 cm dissolved-sorbed source. The overall S2O82- utilization in the dissolved source experiment was calculated by mass balance to be 108-125 g S2O82-/g hydrocarbon treated.
ContributorsCavanagh, Bridget (Author) / Johnson, Paul C (Thesis advisor) / Westerhoff, Paul (Committee member) / Kavazanjian, Edward (Committee member) / Bruce, Cristin (Committee member) / Arizona State University (Publisher)
Created2014
152744-Thumbnail Image.png
Description
Characterization of petroleum spill site source zones directly influences the selection of corrective action plans and frequently affects the success of remediation efforts. For example, simply knowing whether or not nonaqueous phase liquid (NAPL) is present, or if there is chemical storage in less hydraulically accessible regions, will influence corrective

Characterization of petroleum spill site source zones directly influences the selection of corrective action plans and frequently affects the success of remediation efforts. For example, simply knowing whether or not nonaqueous phase liquid (NAPL) is present, or if there is chemical storage in less hydraulically accessible regions, will influence corrective action planning. The overarching objective of this study was to assess if macroscopic source zone features can be inferred from dissolved concentration vs. time data. Laboratory-scale physical model studies were conducted for idealized sources; defined as Type-1) NAPL-impacted high permeability zones, Type-2) NAPL-impacted lower permeability zones, and Type-3) dissolved chemical matrix storage in lower permeability zones. Aquifer source release studies were conducted using two-dimensional stainless steel flow-through tanks outfitted with sampling ports for the monitoring of effluent concentrations and flow rates. An idealized NAPL mixture of key gasoline components was used to create the NAPL source zones, and dissolved sources were created using aqueous solutions having concentrations similar to water in equilibrium with the NAPL sources. The average linear velocity was controlled by pumping to be about 2 ft/d, and dissolved effluent concentrations were monitored daily. The Type-1 experiment resulted in a source signature similar to that expected for a relatively well-mixed NAPL source, with dissolved concentrations dependent on chemical solubility and initial mass fraction. The Type-2 and Type-3 experiments were conducted for 320 d and 190 d respectively. Unlike the Type-1 experiment, the concentration vs. time behavior was similar for all chemicals, for both source types. The magnitudes of the effluent concentrations varied between the Type-2 and Type-3 experiments, and were related to the hydrocarbon source mass. A fourth physical model experiment was performed to identify differences between ideal equilibrium behavior and the source concentration vs. time behavior observed in the tank experiments. Screening-level mathematical models predicted the general behavior observed in the experiments. The results of these studies suggest that dissolved concentration vs. time data can be used to distinguish between Type-1 sources in transmissive zones and Type-2 and Type-3 sources in lower permeability zones, provided that many years to decades of data are available. The results also suggest that concentration vs. time data alone will be insufficient to distinguish between NAPL and dissolved-phase storage sources in lower permeability regions.
ContributorsWilson, Sean Tomas (Author) / Johnson, Paul (Thesis advisor) / Kavazanjian, Edward (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2014
150169-Thumbnail Image.png
Description
A method for evaluating the integrity of geosynthetic elements of a waste containment system subject to seismic loading is developed using a large strain finite difference numerical computer program. The method accounts for the effect of interaction between the geosynthetic elements and the overlying waste on seismic response and allows

A method for evaluating the integrity of geosynthetic elements of a waste containment system subject to seismic loading is developed using a large strain finite difference numerical computer program. The method accounts for the effect of interaction between the geosynthetic elements and the overlying waste on seismic response and allows for explicit calculation of forces and strains in the geosynthetic elements. Based upon comparison of numerical results to experimental data, an elastic-perfectly plastic interface model is demonstrated to adequately reproduce the cyclic behavior of typical geomembrane-geotextile and geomembrane-geomembrane interfaces provided the appropriate interface properties are used. New constitutive models are developed for the in-plane cyclic shear behavior of textured geomembrane/geosynthetic clay liner (GMX/GCL) interfaces and GCLs. The GMX/GCL model is an empirical model and the GCL model is a kinematic hardening, isotropic softening multi yield surface plasticity model. Both new models allows for degradation in the cyclic shear resistance from a peak to a large displacement shear strength. The ability of the finite difference model to predict forces and strains in a geosynthetic element modeled as a beam element with zero moment of inertia sandwiched between two interface elements is demonstrated using hypothetical models of a heap leach pad and two typical landfill configurations. The numerical model is then used to conduct back analyses of the performance of two lined municipal solid waste (MSW) landfills subjected to strong ground motions in the Northridge earthquake. The modulus reduction "backbone curve" employed with the Masing criterion and 2% Rayleigh damping to model the cyclic behavior of MSW was established by back-analysis of the response of the Operating Industries Inc. landfill to five different earthquakes, three small magnitude nearby events and two larger magnitude distant events. The numerical back analysis was able to predict the tears observed in the Chiquita Canyon Landfill liner system after the earthquake if strain concentrations due to seams and scratches in the geomembrane are taken into account. The apparent good performance of the Lopez Canyon landfill geomembrane and the observed tension in the overlying geotextile after the Northridge event was also successfully predicted using the numerical model.
ContributorsArab, Mohamed G (Author) / Kavazanjian, Edward (Thesis advisor) / Zapata, Claudia (Committee member) / Houston, Sandra (Committee member) / Arizona State University (Publisher)
Created2011
149822-Thumbnail Image.png
Description
It is estimated that wind induced soil transports more than 500 x 106 metric tons of fugitive dust annually. Soil erosion has negative effects on human health, the productivity of farms, and the quality of surface waters. A variety of different polymer stabilizers are available on the market for fugitive

It is estimated that wind induced soil transports more than 500 x 106 metric tons of fugitive dust annually. Soil erosion has negative effects on human health, the productivity of farms, and the quality of surface waters. A variety of different polymer stabilizers are available on the market for fugitive dust control. Most of these polymer stabilizers are expensive synthetic polymer products. Their adverse effects and expense usually limits their use. Biopolymers provide a potential alternative to synthetic polymers. They can provide dust abatement by encapsulating soil particles and creating a binding network throughout the treated area. This research into the effectiveness of biopolymers for fugitive dust control involved three phases. Phase I included proof of concept tests. Phase II included carrying out the tests in a wind tunnel. Phase III consisted of conducting the experiments in the field. Proof of concept tests showed that biopolymers have the potential to reduce soil erosion and fugitive dust transport. Wind tunnel tests on two candidate biopolymers, xanthan and chitosan, showed that there is a proportional relationship between biopolymer application rates and threshold wind velocities. The wind tunnel tests also showed that xanthan gum is more successful in the field than chitosan. The field tests showed that xanthan gum was effective at controlling soil erosion. However, the chitosan field data was inconsistent with the xanthan data and field data on bare soil.
ContributorsAlsanad, Abdullah (Author) / Kavazanjian, Edward (Thesis advisor) / Edwards, David (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2011
150784-Thumbnail Image.png
Description
In this work, the vapor transport and aerobic bio-attenuation of compounds from a multi-component petroleum vapor mixture were studied for six idealized lithologies in 1.8-m tall laboratory soil columns. Columns representing different geological settings were prepared using 20-40 mesh sand (medium-grained) and 16-minus mesh crushed granite (fine-grained). The contaminant vapor

In this work, the vapor transport and aerobic bio-attenuation of compounds from a multi-component petroleum vapor mixture were studied for six idealized lithologies in 1.8-m tall laboratory soil columns. Columns representing different geological settings were prepared using 20-40 mesh sand (medium-grained) and 16-minus mesh crushed granite (fine-grained). The contaminant vapor source was a liquid composed of twelve petroleum hydrocarbons common in weathered gasoline. It was placed in a chamber at the bottom of each column and the vapors diffused upward through the soil to the top where they were swept away with humidified gas. The experiment was conducted in three phases: i) nitrogen sweep gas; ii) air sweep gas; iii) vapor source concentrations decreased by ten times from the original concentrations and under air sweep gas. Oxygen, carbon dioxide and hydrocarbon concentrations were monitored over time. The data allowed determination of times to reach steady conditions, effluent mass emissions and concentration profiles. Times to reach near-steady conditions were consistent with theory and chemical-specific properties. First-order degradation rates were highest for straight-chain alkanes and aromatic hydrocarbons. Normalized effluent mass emissions were lower for lower source concentration and aerobic conditions. At the end of the study, soil core samples were taken every 6 in. Soil moisture content analyses showed that water had redistributed in the soil during the experiment. The soil at the bottom of the columns generally had higher moisture contents than initial values, and soil at the top had lower moisture contents. Profiles of the number of colony forming units of hydrocarbon-utilizing bacteria/g-soil indicated that the highest concentrations of degraders were located at the vertical intervals where maximum degradation activity was suggested by CO2 profiles. Finally, the near-steady conditions of each phase of the study were simulated using a three-dimensional transient numerical model. The model was fit to the Phase I data by adjusting soil properties, and then fit to Phase III data to obtain compound-specific first-order biodegradation rate constants ranging from 0.0 to 5.7x103 d-1.
ContributorsEscobar Melendez, Elsy (Author) / Johnson, Paul C. (Thesis advisor) / Andino, Jean (Committee member) / Forzani, Erica (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2012
150101-Thumbnail Image.png
Description
As a prelude to a study on the post-liquefaction properties and structure of soil, an investigation of ground freezing as an undisturbed sampling technique was conducted to investigate the ability of this sampling technique to preserve soil structure and properties. Freezing the ground is widely regarded as an appropriate technique

As a prelude to a study on the post-liquefaction properties and structure of soil, an investigation of ground freezing as an undisturbed sampling technique was conducted to investigate the ability of this sampling technique to preserve soil structure and properties. Freezing the ground is widely regarded as an appropriate technique to recover undisturbed samples of saturated cohesionless soil for laboratory testing, despite the fact that water increases in volume when frozen. The explanation generally given for the preservation of soil structure using the freezing technique was that, as long as the freezing front advanced uni-directionally, the expanding pore water is expelled ahead of the freezing front as the front advances. However, a literature review on the transition of water to ice shows that the volume of ice expands approximately nine percent after freezing, bringing into question the hypothesized mechanism and the ability of a frozen and then thawed specimen to retain the properties and structure of the soil in situ. Bench-top models were created by pluviation of sand. The soil in the model was then saturated and subsequently frozen. Freezing was accomplished using a pan filled with alcohol and dry ice placed on the surface of the sand layer to induce a unidirectional freezing front in the sample container. Coring was used to recover frozen samples from model containers. Recovered cores were then placed in a triaxial cell, thawed, and subjected to consolidated undrained loading. The stress-strain-strength behavior of the thawed cores was compared to the behavior of specimens created in a split mold by pluviation and then saturated and sheared without freezing and thawing. The laboratory testing provide insight to the impact of freezing and thawing on the properties of cohesionless soil.
ContributorsKatapa, Kanyembo (Author) / Kavazanjian, Edward (Thesis advisor) / Houston, Sandra (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2011
151227-Thumbnail Image.png
Description
Volatile Organic Compounds (VOCs) are central to atmospheric chemistry and have significant impacts on the environment. The reaction of oxygenated VOCs with OH radicals was first studied to understand the fate of oxygenated VOCs. The rate constants of the gas-phase reaction of OH radicals with trans-2-hexenal, trans-2-octenal, and trans-2 nonenal

Volatile Organic Compounds (VOCs) are central to atmospheric chemistry and have significant impacts on the environment. The reaction of oxygenated VOCs with OH radicals was first studied to understand the fate of oxygenated VOCs. The rate constants of the gas-phase reaction of OH radicals with trans-2-hexenal, trans-2-octenal, and trans-2 nonenal were determined using the relative rate technique. Then the interactions between VOCs and ionic liquid surfaces were studied. The goal was to find a material to selectively detect alcohol compounds. Computational chemistry calculations were performed to investigate the interactions of ionic liquids with different classes of VOCs. The thermodynamic data suggest that 1-butyl-3-methylimindazolium chloride (C4mimCl) preferentially interacts with alcohols as compared to other classes of VOCs. Fourier transform infrared spectroscopy was used to probe the ionic liquid surface before and after exposure to the VOCs that were tested. New spectral features were detected after exposure of C4mimCl to various alcohols and a VOC mixture with an alcohol in it. The new features are characteristic of the alcohols tested. No new IR features were detected after exposure of the C4mimCl to the aldehyde, ketone, alkane, alkene, alkyne or aromatic compounds. The experimental results demonstrated that C4mimCl is selective to alcohols, even in complex mixtures. The kinetic study of the association and dissociation of alcohols with C4minCl surfaces was performed. The findings in this work provide information for future gas-phase alcohol sensor design. CO2 is a major contributor to global warming. An ionic liquid functionalized reduced graphite oxide (IL-RGO)/ TiO2 nanocomposite was synthesized and used to reduce CO2 to a hydrocarbon in the presence of H2O vapor. The SEM image revealed that IL-RGO/TiO2 contained separated reduced graphite oxide flakes with TiO2 nanoparticles. Diffuse Reflectance Infrared Fourier Transform Spectroscopy was used to study the conversion of CO2 and H2O vapor over the IL-RGO/TiO2 catalyst. Under UV-Vis irradiation, CH4 was found to form after just 40 seconds of irradiation. The concentration of CH4 continuously increased under longer irradiation time. This research is particularly important since it seems to suggest the direct, selective formation of CH4 as opposed to CO.
ContributorsGao, Tingting (Author) / Andino, Jean M (Thesis advisor) / Forzani, Erica (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2012