Matching Items (4)
Filtering by

Clear all filters

135407-Thumbnail Image.png
Description
This research attempts to determine the most effective method of synthesizing a peptide such that it can be utilized as a targeting moiety for polymeric micelles. Two melanoma-associated peptides with high in vitro and in vivo binding affinity for TNF receptors have been identified and synthesized. Matrix Assisted Laser Desorption/Ionization-Time

This research attempts to determine the most effective method of synthesizing a peptide such that it can be utilized as a targeting moiety for polymeric micelles. Two melanoma-associated peptides with high in vitro and in vivo binding affinity for TNF receptors have been identified and synthesized. Matrix Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-ToF) was used to help verify the structure of both peptides, which were purified using Reversed-Phase High Performance Liquid Chromatography (RP-HPLC). The next steps in the research are to attach the peptides to a micelle and determine their impact on micelle stability.
ContributorsMoe, Anna Marguerite (Author) / Green, Matthew (Thesis director) / Jones, Anne (Committee member) / Sullivan, Millicent (Committee member) / Chemical Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Sandra Day O'Connor College of Law (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137623-Thumbnail Image.png
Description
Due to its difficult nature, organic chemistry is receiving much research attention across the nation to develop more efficient and effective means to teach it. As part of that, Dr. Ian Gould at ASU is developing an online organic chemistry educational website that provides help to students, adapts to their

Due to its difficult nature, organic chemistry is receiving much research attention across the nation to develop more efficient and effective means to teach it. As part of that, Dr. Ian Gould at ASU is developing an online organic chemistry educational website that provides help to students, adapts to their responses, and collects data about their performance. This thesis creative project addresses the design and implementation of an input parser for organic chemistry reagent questions, to appear on his website. After students used the form to submit questions throughout the Spring 2013 semester in Dr. Gould's organic chemistry class, the data gathered from their usage was analyzed, and feedback was collected. The feedback obtained from students was positive, and suggested that the input parser accomplished the educational goals that it sought to meet.
ContributorsBeerman, Eric Christopher (Author) / Gould, Ian (Thesis director) / Wilkerson, Kelly (Committee member) / Mosca, Vince (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05
158549-Thumbnail Image.png
Description
Plastic pollution has become a global threat to ecosystems worldwide, with microplastics now representing contaminants reported to occur in ambient air, fresh water, seawater, soils, fauna and people. Over time, larger macro-plastics are subject to weathering and fragmentation, resulting in smaller particles, termed ‘microplastics’ (measuring < 5 mm in diameter),

Plastic pollution has become a global threat to ecosystems worldwide, with microplastics now representing contaminants reported to occur in ambient air, fresh water, seawater, soils, fauna and people. Over time, larger macro-plastics are subject to weathering and fragmentation, resulting in smaller particles, termed ‘microplastics’ (measuring < 5 mm in diameter), which have been found to pollute virtually every marine and terrestrial ecosystem on the planet. This thesis explored the transfer of plastic pollutants from consumer products into the built water environment and ultimately into global aquatic and terrestrial ecosystems.

A literature review demonstrated that municipal sewage sludge produced by wastewater treatment plants around the world contains detectable quantities of microplastics. Application of sewage sludge on land was shown to represent a mechanism for transfer of microplastics from wastewater into terrestrial environments, with some countries reporting as high as 113 ± 57 microplastic particles per gram of dry sludge.

To address the notable shortcoming of inconsistent reporting practices for microplastic pollution, this thesis introduced a novel, online calculator that converts the number of plastic particles into the unambiguous metric of mass, thereby making global studies on microplastic pollution directly comparable.

This thesis concludes with an investigation of a previously unexplored and more personal source of plastic pollution, namely the disposal of single-use contact lenses and an assessment of the magnitude of this emerging source of environmental pollution. Using an online survey aimed at quantifying trends with the disposal of lenses in the US, it was discovered that 20 ± 0.8% of contact lens wearers flushed their used lenses down the drain, amounting to 44,000 ± 1,700 kg y-1 of lens dry mass discharged into US wastewater.

From the results it is concluded that conventional and medical microplastics represent a significant global source of pollution and a long-term threat to ecosystems around the world. Recommendations are provided on how to limit the entry of medical microplastics into the built water environment to limit damage to ecosystems worldwide.
ContributorsRolsky, Charles (Author) / Halden, Rolf (Thesis advisor) / Green, Matthew (Committee member) / Neuer, Susanne (Committee member) / Polidoro, Beth (Committee member) / Smith, Andrew (Committee member) / Arizona State University (Publisher)
Created2020
161322-Thumbnail Image.png
Description
Per- and polyfluoroalkyl substances (PFAS) are anthropogenic chemicals used for a wide variety of products and industrial processes, including being an essential class of chemicals in the fabrication of semiconductors. Proven concerns related to bioaccumulation and toxicity across multiple species have resulted in health advisory and regulatory initiatives for PFAS

Per- and polyfluoroalkyl substances (PFAS) are anthropogenic chemicals used for a wide variety of products and industrial processes, including being an essential class of chemicals in the fabrication of semiconductors. Proven concerns related to bioaccumulation and toxicity across multiple species have resulted in health advisory and regulatory initiatives for PFAS in drinking and wastewaters. Among impacted users of PFAS, the semiconductor industry is in urgent need of technologies to remove PFAS from water. Specifically, they prefer technologies capable of mineralizing PFAS into inorganic fluoride (F-). The goal of this thesis is to compare the effectiveness of photo- versus electrocatalytic treatment in benchtop reactor systems PFAS in industrial wastewater before selecting one technology to investigate comprehensively. First, a model wastewater was developed based upon semiconductor samples to represent water matrices near where PFAS are used and the aggregate Fab effluent, which were then used in batch catalytic experiments. Second, batch experiments with homogenous photocatalysis (UV/SO32-) were found to be more energy-intensive than heterogeneous catalysis using boron-doped diamond (BDD) electrodes, and the latter approach was then studied in-depth. During electrocatalysis, longer chain PFAS (C8; PFOA & PFOS) were observed to degrade faster than C6 and C4 PFAS. This study is the first to report near-complete defluorination of not only C8- and C6- PFAS, but also C4-PFAS, in model wastewaters using BDD electrocatalysis, and the first to report such degradation in real Fab wastewater effluents. Based upon differences in PFAS degradation rates observed in single-solute systems containing only C4 PFAS versus multi-solute systems including C4, C6, and C8 PFAS, it was concluded that the surfactant properties of the longer-chain PFAS created surface films on the BDD electrode surface which synergistically enhanced removal of shorter-chain PFAS. The results from batch experiments that serve as the basis of this thesis will be used to assess the chemical byproducts and their associated bioaccumulation and toxicity. This thesis was aimed at developing an efficient method for the degradation of perfluoroalkyl substances from industrial process waters at realistic concentrations.
ContributorsNienhauser, Alec Brockway (Author) / Westerhoff, Paul (Thesis advisor) / Garcia-Segura, Sergi (Committee member) / Thomas, Marylaura (Committee member) / Green, Matthew (Committee member) / Arizona State University (Publisher)
Created2021