Matching Items (111)
Filtering by

Clear all filters

154207-Thumbnail Image.png
Description
Since its first report in 1976, many outbreaks linked to Legionella have been reported in the world. These outbreaks are a public health concern because of legionellosis, which is found in two forms, Pontiac fever and Legionnaires disease. Legionnaires disease is a type of pneumonia responsible for the majority of

Since its first report in 1976, many outbreaks linked to Legionella have been reported in the world. These outbreaks are a public health concern because of legionellosis, which is found in two forms, Pontiac fever and Legionnaires disease. Legionnaires disease is a type of pneumonia responsible for the majority of the illness in the reported outbreaks of legionellosis. This study consists of an extensive literature review and experimental work on the aerosolization and UV inactivation of E.coli and Legionella under laboratory conditions. The literature review summarizes Legionella general information, occurrence, environmental conditions for its survival, transmission to human, collection and detection methodologies and Legionella disinfection in air and during water treatment processes.

E. coli was used as an surrogate for Legionella in experimentation due to their similar bacterial properties such as size, gram-negative rod-shaped, un-encapsulated and non-spore-forming bacterial cells. The accessibility and non-pathogenicity of E. coli also served as factors for the substitution.

Three methods of bacterial aerosolization were examined, these included an electric spray gun, an air spray gun and a hand-held spray bottle. A set of experiments were performed to examine E. coli aerosolization and transport in the aerosolization chamber (an air tight box) placed in a Biological Safety Cabinet. Spiked sample was sprayed through the opening from one side of the aerosolization chamber using the selected aerosolization methods. The air sampler was placed at the other side to collect 100 L air sample from the aerosolization chamber. A Tryptic Soy Agar plate was placed inside the air sampler to collect and subsequently culture E. coli cells from air. Results showed that the air spray gun has the best capability of aerosolizing bacteria cells under all the conditions examined in this study compared to the other two spray methods. In this study, we provide a practical and efficient method of bacterial aerosolization technique for microbial dispersion in air. The suggested method can be used in future research for microbial dispersion and transmission studies.

A set of experiments were performed to examine UV inactivation of E. coli and Legionella cells in air. Spiked samples were sprayed through the opening from one side of the aerosolization chamber using the air spray gun. A UV-C germicidal lamp inside the Biological Safety Cabinet was turned on after each spray. The air samples were collected as previously described. The application of UV-C for the inactivation of bacterial cells resulted in removing aerosolized E. coli and Legionella cells in air. A 1 log reduction was achieved with 5 seconds UV exposure time while 10 seconds UV exposure resulted in a 2 log bacterial reduction for both bacteria. This study shows the applicability of UV inactivation of pathogenic bacterial cells in air by short UV exposure time. This method may be applicable for the inactivation of Legionella in air ducts by installing germicidal UV lamps for protecting susceptible populations in certain indoor settings such as nursing homes or other community rooms.
ContributorsYao, Wei (Author) / Abbaszadegan, Morteza (Thesis advisor) / Fox, Peter (Committee member) / Alum, Absar (Committee member) / Arizona State University (Publisher)
Created2015
157813-Thumbnail Image.png
Description
This study reports on the treatment of ammunition wastewater containing RDX (1,3,5-Trinitro-1,3,5-triazinane), HMX (1,3,5,7-Tetranitro-1,3,5,7-tetrazoctane), and the oxyanion co-contaminants nitrate (NO3-) and perchlorate (ClO4-) in a membrane biofilm reactor (MBfR), a Palladium (Pd)-coated MBfR (Pd-MBfR), and an abiotic Pd-coated film reactor (Pd-film reactor). A consortium of nitrate- and perchlorate-reducing bacteria,

This study reports on the treatment of ammunition wastewater containing RDX (1,3,5-Trinitro-1,3,5-triazinane), HMX (1,3,5,7-Tetranitro-1,3,5,7-tetrazoctane), and the oxyanion co-contaminants nitrate (NO3-) and perchlorate (ClO4-) in a membrane biofilm reactor (MBfR), a Palladium (Pd)-coated MBfR (Pd-MBfR), and an abiotic Pd-coated film reactor (Pd-film reactor). A consortium of nitrate- and perchlorate-reducing bacteria, continuously fed with synesthetic ammunition wastewater featuring 4 mM nitrate and 0.1-2 mM perchlorate, formed robust biofilms on the membrane surfaces in the MBfR and Pd-MBfR. PdNPs with diameter 4-5-nm auto-assembled and stabilized on the surfaces of membrane and biofilm in MPfR and Pd-MBfR. Nitrate and perchlorate were rapidly reduced by the biofilms in the MBfR and Pd-MBfR, but they were not catalytically reduced through PdNPs alone in the MPfR. In contrast, RDX or HMX was recalcitrant to enzymatic degradation in MBfR, but was rapidly reduced through Pd-catalytic denitration in the MPfR and Pd-MBfR to form ‒N‒NHOH or ‒N‒H. Based on the experimental results, the synergistic coupling of Pd-based catalysis and microbial activity in the Pd-MBfR should be a viable new technology for treating ammunition wastewater.
ContributorsZheng, Chenwei (Author) / Rittmann, Bruce (Thesis advisor) / Delgado, Anca (Committee member) / Lai, Yen-Jung (Committee member) / Arizona State University (Publisher)
Created2019
157581-Thumbnail Image.png
Description
Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved

Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved in enhancing the methane gas generation in anaerobic digestion of activated sludge. However, no studies have been conducted regarding the effect of ZVM stimulation to Municipal Solid Waste (MSW) degradation. Therefore, a collaborative study was developed to manipulate microbial activity in the landfill bioreactors to favor methane production by adding ZVMs. This study focuses on evaluating the effects of added ZVM on the leachate generated from replicated lab scale landfill bioreactors. The specific objective was to investigate the effects of ZVMs addition on the organic and inorganic pollutants in leachate. The hypothesis here evaluated was that adding ZVM including ZVI and Zero Valent Manganese (ZVMn) will enhance the removal rates of the organic pollutants present in the leachate, likely by a putative higher rate of microbial metabolism. Test with six (4.23 gallons) bioreactors assembled with MSW collected from the Salt River Landfill and Southwest Regional Landfill showed that under 5 grams /liter of ZVI and 0.625 grams/liter of ZVMn additions, no significant difference was observed in the pH and temperature data of the leachate generated from these reactors. The conductivity data suggested the steady rise across all reactors over the period of time. The removal efficiency of sCOD was highest (27.112 mg/lit/day) for the reactors added with ZVMn at the end of 150 days for bottom layer, however the removal rate was highest (16.955 mg/lit/day) for ZVI after the end of 150 days of the middle layer. Similar trends in the results was observed in TC analysis. HPLC study indicated the dominance of the concentration of heptanoate and isovalerate were leachate generated from the bottom layer across all reactors. Heptanoate continued to dominate in the ZVMn added leachate even after middle layer injection. IC analysis concluded the chloride was dominant in the leachate generated from all the reactors and there was a steady increase in the chloride content over the period of time. Along with chloride, fluoride, bromide, nitrate, nitrite, phosphate and sulfate were also detected in considerable concentrations. In the summary, the addition of the zero valent metals has proved to be efficient in removal of the organics present in the leachate.
ContributorsPandit, Gandhar Abhay (Author) / Cadillo – Quiroz, Hinsby (Thesis advisor) / Olson, Larry (Thesis advisor) / Boyer, Treavor (Committee member) / Arizona State University (Publisher)
Created2019
157686-Thumbnail Image.png
Description
Humans are exposed up to thousands of per- and polyfluoroalkyl substances (PFAS) in the environment, but most of the research and action has been directed towards only two PFAS compounds. These two compounds are part of a subcategory of PFAS called perfluoroalkyl acids (PFAAs). It has been a challenge for

Humans are exposed up to thousands of per- and polyfluoroalkyl substances (PFAS) in the environment, but most of the research and action has been directed towards only two PFAS compounds. These two compounds are part of a subcategory of PFAS called perfluoroalkyl acids (PFAAs). It has been a challenge for the environmental community to mitigate risks caused by PFAAs due to their high persistence and lack of effective measures to remove them from the environment, especially in heavily impacted areas like fire-training sites. The goal of this work was to further answer some questions regarding the removal of PFAAs in the environment by looking at anion exchange resin characteristics and presence of a competing compound, natural organic matter (NOM), in the adsorption of environmentally relevant PFAS compounds including the two often monitored 8-carbon chain PFAAs. Two different resins were tested with two forms of counterions, in both groundwater and NOM impacted groundwater. Resin polymer matrix was the most important property in the adsorption of PFAAs, the two resins used A520E and A860 had similar properties except for their matrices polystyrene (PS) and polyacrylic (PA), respectively. The PS base is most effective at PFAAs adsorption, while the PA is most effective at NOM adsorption. The change in the counterion did not negatively affect the adsorption of PFAAs and is, therefore, a viable alternative for future studies that include regeneration and destruction of PFAAs. The presence of NOM also did not significantly affect the adsorption of PFAAs in the PS resin A520E, although for some PFAAs compounds it did affect adsorption for the PA resin. Ultimately, PS macroporous resins with a strong Type I or Type II base work best in PFAAs removal.
Contributorsdel Moral, Lerys Laura (Author) / Boyer, Treavor (Thesis advisor) / Abbaszadegan, Morteza (Committee member) / Hamilton, Kerry (Committee member) / Arizona State University (Publisher)
Created2019
158011-Thumbnail Image.png
Description
Mobile sources emit a number of different gases including nitrogen oxides (NOx) and volatile organic compounds (VOCs) as well as particulate matter (PM10, PM2.5). As a result, mobile sources are major contributors to urban air pollution and can be the dominant source of some local air pollution problems. In general,

Mobile sources emit a number of different gases including nitrogen oxides (NOx) and volatile organic compounds (VOCs) as well as particulate matter (PM10, PM2.5). As a result, mobile sources are major contributors to urban air pollution and can be the dominant source of some local air pollution problems. In general, mobile sources are divided into two categories: on-road mobile sources and non-road mobile sources. In Maricopa County, the Maricopa County Air Quality Department prepares inventories of all local sources [11], [12]. These inventories report that for Maricopa County, on-road mobile sources emit about 23% of total PM2.5 annually, 58% of the total NOx, and 8% of the total VOCs. To understand how future changes how vehicles might impact local air quality, this work focuses on comparing current inventories of PM2.5, black carbon (BC), NOx, and VOCs to what may be expected emissions in future years based on different scenarios of penetration of hybrid gas-electric vehicles (HEV) and electric vehicles (EV) as well as continued reduction in emissions from conventional internal combustion (IC) vehicles. A range of scenarios has been developed as part of this thesis based on literature reports [6], [8], air quality improvement plan documentation [5], projected vehicle sales and registration [3], [4], as well as using EPA’s Motor Vehicle Emission Simulator (MOVES) [9]. Thus, these created scenarios can be used to evaluate what factors will make the most significant difference in improving local air quality through reduced emissions of PM2.5, BC, NOx and VOCs in the future. Specifically, the impact of a greater fraction of cleaner alternative vehicles such as hybrid-electric and electric vehicles will be compared to the impact of continual reductions in emissions from traditional internal combustion vehicles to reducing urban air pollution emissions in Maricopa County.
ContributorsAlboaijan, Fahad A M S (Author) / Fraser, Matthew (Thesis advisor) / Andino, Jean (Committee member) / Lackner, Klaus (Committee member) / Arizona State University (Publisher)
Created2020
157534-Thumbnail Image.png
Description
The objective of this study was to evaluate possible bioremediation strategy for aerobic aquifers by combining ZVI chemical reduction and microbial reductive dechlorination for TCE and ClO4-. To achieve this objective, continuous flow-through soil columns were used to test the hypothesis that bioaugmentation with dechlorinating enrichment cultures downstream of the

The objective of this study was to evaluate possible bioremediation strategy for aerobic aquifers by combining ZVI chemical reduction and microbial reductive dechlorination for TCE and ClO4-. To achieve this objective, continuous flow-through soil columns were used to test the hypothesis that bioaugmentation with dechlorinating enrichment cultures downstream of the ZVI injection can lead to complete reduction of TCE and ClO4- in aerobic aquifers. We obtained soil and groundwater from a Superfund site in Arizona. The experiments consisted of 205 cm3 columns packed with soil and ZVI, which fed 1025 cm3 columns packed with soil, biostimulated with fermentable substrates and bioaugmented. Aerobic groundwater was pumped through the ZVI columns. The ZVI reduced the oxidation-reduction potential (ORP) of groundwater from +150 mV to -190 mV. The reduced groundwater and biostimulation with fermentable substrates created anaerobic conditions in the bioaugmentation columns favorable for anaerobic microbial activity. Perchlorate (ClO4-) reduction to non-detectable levels occurred after biostimulation. Reduction of TCE to cis-dichloroethene, vinyl chloride and ethene was observed only after bioaugmentation. Within ~120 days of continuous columns operation, ethene was produced in the bioaugmentation columns this dechlorination activity was sustained until the end of experiments. The groundwater from the Superfund site had high concentration of sulfate (~1000 mg/L). Substantial sulfate reduction occurred in the bioaugmentation columns. Complete microbial reduction of TCE and perchlorate is usually challenging in the presence of high sulfate concentration; however, the strategy tested in this study suggests that a bioremediation scheme for simultaneous reduction of TCE and perchlorate in aerobic aquifers containing high sulfate concentration is feasible.
ContributorsRao, Shefali (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Delgado, Anca G. (Thesis advisor) / LaPat-Polasko, Laurie (Committee member) / Arizona State University (Publisher)
Created2019
157739-Thumbnail Image.png
Description
The study was to analyze the extent of bacterial transport in a two-dimensional tank under saturated conditions. The experiments were done in a 2-D tank packed with 3,700 in3 of fine grained, homogenous, chemically inert sand under saturated conditions. The tank used for transport was decontaminated by backwashing with 0.6%

The study was to analyze the extent of bacterial transport in a two-dimensional tank under saturated conditions. The experiments were done in a 2-D tank packed with 3,700 in3 of fine grained, homogenous, chemically inert sand under saturated conditions. The tank used for transport was decontaminated by backwashing with 0.6% chlorine solution with subsequent backwashing with chlorine-neutral water (tap water and Na2S2O3) thus ensuring no residual chlorine in the tank. The transport of bacteria was measured using samples collected from ports at vertical distances of 5, 15 and 25 inches (12.7, 38.1 and 63.5 cm) from the surface of the sand on both sides for the 2-D tank. An influent concentration of 105 CFU/mL was set as a baseline for both microbes and the percolation rate was set at 11.37 inches/day using a peristaltic pump at the bottom outlet. At depths of 5, 15 and 25 inches, E. coli breakthroughs were recorded at 5, 17 and 28 hours for the ports on the right side and 7, 17 and 29 hours for the ports on the left sides, respectively. At respective distances Legionella breakthroughs were recorded at 8, 22 and 35 hours for the ports on the right side and 9, 24, 36 hours for the ports on the left side, respectively which is homologous to its pleomorphic nature. A tracer test was done and the visual breakthroughs were recorded at the same depths as the microbes. The breakthroughs for the dye at depths of 5, 15 and 25 inches, were recorded at 13.5, 41 and 67 hours for the ports on the right side and 15, 42.5 and 69 hours for the ports on the left side, respectively. However, these are based on visual estimates and the physical breakthrough could have happened at the respective heights before the reported times. This study provided a good basis for the premise that transport of bacterial cells and chemicals exists under recharge practices.
ContributorsMondal, Indrayudh (Author) / Abbaszadegan, Morteza (Thesis advisor) / Dahlen, Paul (Committee member) / Delgado, Anca (Committee member) / Arizona State University (Publisher)
Created2019
158657-Thumbnail Image.png
Description
Soil impacts from crude oil spills in the United States are regulated at the state level using the analytical group total petroleum hydrocarbons (TPH) as the primary regulatory metric. TPH concentration in soil is used to enforce and verify compliance with cleanup levels (CULs). While there are significant

Soil impacts from crude oil spills in the United States are regulated at the state level using the analytical group total petroleum hydrocarbons (TPH) as the primary regulatory metric. TPH concentration in soil is used to enforce and verify compliance with cleanup levels (CULs). While there are significant differences between states concerning TPH CULs based on land use, most states enforce an action level of 100 mg TPH kg⁻1. The most common standard method for quantification of TPH in soils is EPA Method 8015, which entails extraction of petroleum hydrocarbons by dichloromethane and analysis by gas chromatography with flame ionization detection (GC-FID). Using Method 8015 or similar methods, TPH is defined as the cumulative area of all peaks within a defined analytical range (typically C6-C36). A limitation of TPH standard methods is their lack of specificity for petroleum hydrocarbons (i.e., these methods can also detect and quantify compounds that are an inherent part of natural soil organic matter (SOM)). While the interference of SOM compounds with TPH quantification is known, documentation regarding the extent of this interference is almost absent in the peer-reviewed literature. In this thesis, 15 biogeochemically-diverse soils, uncontaminated by crude oil hydrocarbons, were sampled from geographically diverse locations and investigated in an effort to determine the concentration of SOM that registers as TPH. Solvent extractions using dichloromethane or n-pentane in conjunction with GC-FID analysis showed that all soils had detectable concentrations of TPH ranging from 160 to 2700 mg TPH kg–1. Based on the results from this study, it can be concluded that many soils have a higher apparent TPH concentration than most US state-level CULs. In addition, the data from this study show that soils with a lower pH and/or a higher organic carbon content also have higher concentrations of apparent TPH. Findings from this thesis show that uncontaminated soils have a significant apparent TPH concentration that would be considered part of the TPH originating from contamination and should be accounted for in the regulatory landscape.
ContributorsSundar, Skanda Vishnu (Author) / Delgado, Anca G (Thesis advisor) / Dahlen, Paul (Committee member) / Sihota, Natasha (Committee member) / Arizona State University (Publisher)
Created2020
158669-Thumbnail Image.png
Description
“Airborne dispersal of microorganisms influences their biogeography, gene flow, atmospheric processes, human health and transmission of pathogens that affect humans, plants and animals” (Alsved et al., 2018). Many airborne pathogens cause diseases, such as Legionnaires disease, which is a type of pneumonia caused due to Legionella. Since the first report

“Airborne dispersal of microorganisms influences their biogeography, gene flow, atmospheric processes, human health and transmission of pathogens that affect humans, plants and animals” (Alsved et al., 2018). Many airborne pathogens cause diseases, such as Legionnaires disease, which is a type of pneumonia caused due to Legionella. Since the first report of a Legionella outbreak in 1976, or reports of Non – tuberculous Mycobacterium (NTM) outbreaks in hospital and healthcare settings by the CDC, it is significant to understand the behavior, occurrence and persistence of opportunistic pathogenic aerosols in the atmosphere. This study comprises a literature review and experimental work on airborne dispersion of 4 microorganisms – E. coli, Legionella pneumophila, Mycobacterium phlei and bacteriophage P22. The literature review summarizes their characteristics, their potential sources, disease outbreaks, collection and detection methodologies, environmental conditions for their growth and survival and few recommendations for reducing potential outbreaks. Aerosolization of each of these microorganisms was carried out separately in a closed environment using a spray gun and a nebulizer. The spraying time consisted of 1 sec, 5secs or 10secs, from one end of a chamber, and collecting air sample from the other end of the chamber, using a microbial air sampler. The air sample collection was performed to understand their transport, dispersion and reduction in air. Legionella showed a log reduction of ~4 using spray gun and ≤0.6 using nebulizer, whereas Mycobacterium showed a log reduction of ~4.5 using spray gun and ≤0.7 using nebulizer, respectively. Bacteriophage P22 on the other hand showed a 4 log reduction using spray gun and ≤1.4 using the nebulizer. This shows that aerosolization of microorganisms depends on its cell structure, size and survivability. Legionella follows the air – to – water transmission route, and Mycobacterium is hydrophobic, due to which their aerosols are more stable and active, than E. coli. Other environmental properties such as relative humidity and temperature impact the transport and dispersion of microorganisms in air.

The experiments in this study validated the aerosolization and transport of Legionella, Mycobacterium and bacteriophage P22 in a closed environment over time. In general, microbial concentration collected in air increased with aerosolization time of the test water. On the other hand, their concentration significantly decreased as elapsed time progressed after aerosolization, due to settling effect of larger particles and potential reduction due to inactivation of bacterial and viruses in the air.
ContributorsAmit, Aditi Ashwini (Author) / Abbaszadegan, Morteza (Thesis advisor) / Fox, Peter (Committee member) / Alum, Absar (Committee member) / Arizona State University (Publisher)
Created2020
158705-Thumbnail Image.png
Description
Water reuse and nutrient recovery are long-standing strategies employed in agricultural systems. This is especially true in dry climates where water is scarce, and soils do not commonly contain the nutrients or organic matter to sustain natural crop growth. Agriculture accounts for approximately 70% of all freshwater withdrawals globally. This

Water reuse and nutrient recovery are long-standing strategies employed in agricultural systems. This is especially true in dry climates where water is scarce, and soils do not commonly contain the nutrients or organic matter to sustain natural crop growth. Agriculture accounts for approximately 70% of all freshwater withdrawals globally. This essential sector of society therefore plays an important role in ensuring water sources are maintained and that the food system can remain resilient to dwindling water resources. The purpose of this research is to quantify the benefits of organic residuals and reclaimed water use in agriculture in arid environments through the development of a systematic review and case study. Data from the systematic review was extracted to be applied to a case study identifying the viability and benefits of organic residuals on arid agriculture. Results show that the organic residuals investigated do have quantitative benefits to agriculture such as improving soil health, reducing the need for conventional fertilizers, and reducing irrigation needs from freshwater sources. Some studies found reclaimed water sources to be of better quality than local freshwater sources due to environmental factors. Biosolids and manure are the most concentrated of the organic residuals, providing nutrient inputs and enhancing long-term soil health. A conceptual model is presented to demonstrate the quantitative benefits of using a reclaimed water source in Pinal County, Arizona on a hypothetical crop of cotton. A goal of the model is to take implied nutrient inputs from reclaimed water sources and quantify them against standard practice of using irrigated groundwater and conventional fertilizers on agricultural operations. Pinal County is an important case study area where farmers are facing cuts to their water resources amid a prolonged drought in the Colorado River Basin. The model shows that a reclaimed water source would be able to offset all freshwater and conventional fertilizer use, but salinity in reclaimed water sources would force a need for additional irrigation in the form of a large leaching fraction. This review combined with the case study demonstrate the potential for nutrient and water reuse, while highlighting potential barriers to address.
ContributorsKrukowski, William Lee (Author) / Muenich, Rebecca (Thesis advisor) / Williams, Clinton (Committee member) / Hamilton, Kerry (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2020