Matching Items (512)
Filtering by

Clear all filters

161789-Thumbnail Image.png
Description
The flexibility and robustness of social insect colonies, when they cope with challenges as integrated units, raise many questions, such as how hundreds and thousands of individual local responses are coordinated without a central controlling process. Answering such questions requires: 1. Quantifiable collective responses of colonies under specific scenarios; 2.

The flexibility and robustness of social insect colonies, when they cope with challenges as integrated units, raise many questions, such as how hundreds and thousands of individual local responses are coordinated without a central controlling process. Answering such questions requires: 1. Quantifiable collective responses of colonies under specific scenarios; 2. Decomposability of the collective colony-level response into individual responses; and 3. Mechanisms to integrate the colony- and individual-level responses. In the first part of my dissertation, I explore coordinated collective responses of colonies in during the alarm response to an alarmed nestmate (chapter 2&3). I develop a machine-learning approach to quantitatively estimate the collective and individual alarm response (chapter 2). Using this methodology, I demonstrate that colony alarm responses to the introduction of alarmed nestmates can be decomposed into immediately cascading, followed by variable dampening processes. Each of those processes are found to be modulated by variation in individual alarm responsiveness, as measured by alarm response threshold and persistence of alarm behavior. This variation is modulated in turn by environmental context, in particular with task-related social context (chapter 3). In the second part of my dissertation, I examine the mechanisms responsible for colonial changes in metabolic rate during ontogeny. Prior studies have found that larger ant colonies (as for larger organisms) have lower mass-specific metabolic rates, but the mechanisms remain unclear. In a 3.5-year study on 25 colonies, metabolic rates of colonies and colony components were measured during ontogeny (chapter 4). The scaling of metabolic rate during ontogeny was fit better by segmented regression or quadratic regression models than simple linear regression models, showing that colonies do not follow a universal power-law of metabolism during the ontogenetic development. Furthermore, I showed that the scaling of colonial metabolic rates can be primarily explained by changes in the ratio of brood to adult workers, which nonlinearly affects colonial metabolic rates. At high ratios of brood to workers, colony metabolic rates are low because the metabolic rate of larvae and pupae are much lower than adult workers. However, the high colony metabolic rates were observed in colonies with moderate brood: adult ratios, because higher ratios cause adult workers to be more active and have higher metabolic rates, presumably due to the extra work required to feed more brood.
ContributorsGuo, Xiaohui (Author) / Fewell, Jennifer H (Thesis advisor) / Kang, Yun (Thesis advisor) / Harrison, Jon F (Committee member) / Liebig, Juergen (Committee member) / Pratt, Stephen C (Committee member) / Pavlic, Theodore P (Committee member) / Arizona State University (Publisher)
Created2021
161799-Thumbnail Image.png
Description
The control, function, and evolution of sleep in animals has received little attention compared to many other fitness-relevant animal behaviors. Though natural selection has largely been thought of as the driving evolutionary force shaping sleep biology, sexual and social selection may also have transformative effects on sleep quantity and quality

The control, function, and evolution of sleep in animals has received little attention compared to many other fitness-relevant animal behaviors. Though natural selection has largely been thought of as the driving evolutionary force shaping sleep biology, sexual and social selection may also have transformative effects on sleep quantity and quality in animals. An overarching hypothesis is that increased levels of investment into inter-sexual choice and intra-sexual competition will reduce sleep. An alternative hypothesis is that sexual ornamentation (e.g. avian plumage coloration and song) may have evolved to communicate sleep health and may therefore be positively related to sleep investment. In this dissertation, I studied how sleep is related to components of sexual and social selection in animals (mostly in birds). I first reviewed the literature for empirical examples of how social and sexual selection drive animal sleep patterns and found support for this relationship in some common types of inter-individual interactions (e.g. mating, intra-sexual competition, parent-offspring interactions, group interactions); I also provided new ideas and hypotheses for future research. I then tested associations between sleep behavior with expression of ornaments (song and plumage coloration), using the house finch (Haemorhous mexicanus) as a model system. For both color and song, I found support for the hypothesis that individuals with exaggerated ornaments slept deeper and longer, suggesting that sleep is a critical resource for ornament elaboration and/or may be communicated by both types of sexual signal. Following this, I tested the phylogenetic association between sleep and social/sexual selection as well as other life-history traits across birds. I found that more territorial bird species sleep less, that polygynous birds sleep more than monogamous and polygynandrous birds, and that birds migrating longer distances sleep less and have less REM sleep. Finally, in the interest of applying basic knowledge about sleep biology to current global problems, I found support for the hypothesis that house finches from city environments have developed resilience to artificial light pollution at night. Altogether, I found that social, sexual, and life-history traits are indeed important and overlooked drivers of sleep behavior from multiple levels of analysis.
ContributorsHutton, Pierce (Author) / McGraw, Kevin J (Thesis advisor) / Rutowski, Ronald L (Committee member) / Deviche, Pierre J (Committee member) / Sweazea, Karen L (Committee member) / Lesku, John A (Committee member) / Arizona State University (Publisher)
Created2021
161803-Thumbnail Image.png
Description
When exposed to abiotic stresses, Escherichia coli responds by activating various stress-mitigating pathways. Initiation of stress responses partially relies on the RNA polymerase (RNAP) to transcribe genes necessary to tolerate various stresses, including nutritional deprivation and heat exposure. Consequently, RNAP mutations impacting transcription can have pleiotropic effects on the cell

When exposed to abiotic stresses, Escherichia coli responds by activating various stress-mitigating pathways. Initiation of stress responses partially relies on the RNA polymerase (RNAP) to transcribe genes necessary to tolerate various stresses, including nutritional deprivation and heat exposure. Consequently, RNAP mutations impacting transcription can have pleiotropic effects on the cell physiology and the ability to tolerate stress. Previously, while investigating antibiotic-resistant mutations arising in the absence of major antibiotic efflux pumps, four mutants containing alterations in the RNA polymerase beta subunit gene (rpoB) were isolated (Cho & Misra, 2021). Of the four mutants, one (RpoB58) was found to be thermotolerant, permitting homogenous, stable growth at temperatures up to 47°C, whereas the parental rpoB wildtype (RpoB-WT) was only able to do so up to 45°C. Additionally, RNA-Seq analysis indicated that the RpoB58 mutant had a ‘stringent’ profile that is normally seen under nutritionally deprived conditions. To better understand the regulatory pathways used to confer stress tolerance, this thesis sought to further characterize and investigate the intracellular mechanisms contributing to the thermotolerance conferred by the rpoB58 mutation. The RpoB58 mutant was found to be significantly more tolerant to both continuous heat stress (up to 47°C) and short-term heat (55°C) and ethanol (25%) exposure. Additionally, the RpoB58 mutant tolerated the absence or depletion of major heat shock chaperones DnaJ and DnaK that normally play key roles during temperature stresses by reducing protein misfolding. RNA-Seq data and reporter gene assays showed reduced expression of genes involved in protein synthesis. A similar reduction in the expression of protein synthesis genes was observed when cells were grown in growth-limiting minimal media. Interestingly, growth in minimal medium rescued the ΔdnaJ defect like the rpoB58 mutation. Based on these data, it was proposed that a decrease in protein synthesis, whether caused by rpoB58 or the growth medium, would result in less growth-inhibiting protein misfolding and aggregation, especially at higher growth temperatures where proteins are susceptible to denaturation and aggregation. As a result of these investigations, a possible mechanistic insight was provided as to how the rpoB58 mutation confers thermotolerance.
ContributorsYeh, Melody (Author) / Misra, Rajeev RM (Thesis advisor) / Wang, Xuan XW (Committee member) / Muralinath, Maneesha MM (Committee member) / Arizona State University (Publisher)
Created2021
161810-Thumbnail Image.png
Description
Desalination of seawater, wastewater, and impaired groundwater is becoming essential to meet global water demands. In Saudi Arabia alone, desalination will meet 70% of the country’s water sources by 2050. Three selective desalination processes are presented in this dissertation including i) pressure-driven membrane using reverse osmosis (RO), ii) thermal-driven process

Desalination of seawater, wastewater, and impaired groundwater is becoming essential to meet global water demands. In Saudi Arabia alone, desalination will meet 70% of the country’s water sources by 2050. Three selective desalination processes are presented in this dissertation including i) pressure-driven membrane using reverse osmosis (RO), ii) thermal-driven process by membrane distillation (MD), and iii) electro-potential driven of electrocatalytic for selective ion conversion. Modern RO membranes have reached their theoretical performance limits, resulting in minimal need to innovate at membrane material level. Bulk salt removal is not always needed, however, selective removal of problematic salt may provide lower cost strategies. Therefore, the overarching goal of this dissertation involves i) evaluating wastewater desalination at system level to reduce energy required to enable wastewater reuse, and ii) exploring micro level reactor architectures to identify low-energy strategies for selective ion treatment in impaired waters.System level strategies at wastewater facilities by leveraging local co-located cool water source enabled MD system to treat warm wastewater RO brine resulting in enhanced water recovery, decreased brine volume, and minimized energy requirements. A temperature differential of (ΔT= 10 ͦ C) between brine and surface water was adequate for membrane distillation process leading to 25% less energy than normal MD. Two micro-sized reactor designs were considered for selective salt removal. First, microfluidic testing platforms were successfully designed and fabricated using natural and engineered nanotubes as potential new architectures for salts separation. Tobacco mosaic virus (TMV) was gown and purified along with carbon nanotubes (CNTs) and were deposited on silicon wafers as part of the microfluidic devices. Progress was terminated after two years, due to complications associated with alignment of the nanotubes on wafers. Specifically, the separation issues and straight alignment of nanotubes as a key parameter for microfluidic device fabrication. The innovation I made provided a platform for further research through micro-sized devices. I pivoted to study selective ion destruction rather than separation, using an electrochemical microfluidic device. The electrochemical microfluidic device allowed probing of energy consumption in microchannel and showed one order of magnitude lower energy for nitrite removal when compared to a conventional electrochemical reactor.
ContributorsAlrehaili, Omar (Author) / Westerhoff, Paul PW (Thesis advisor) / Perreault, Francois FP (Committee member) / Sinha, Shahnawaz SS (Committee member) / Garcia-Segura, Sergi SGS (Committee member) / Arizona State University (Publisher)
Created2021
161656-Thumbnail Image.png
Description
The high levels of pollution associated with mining activities necessitate more efficient methods of treating mining effluent before it is released into the environment. Phosphate -mining wastewater contains high concentrations of sulfate that can be removed and recovered as elemental sulfur (S0), which is a useful resource. The Membrane Biofilm

The high levels of pollution associated with mining activities necessitate more efficient methods of treating mining effluent before it is released into the environment. Phosphate -mining wastewater contains high concentrations of sulfate that can be removed and recovered as elemental sulfur (S0), which is a useful resource. The Membrane Biofilm Reactor (MBfR) uses gas-transfer membranes for the delivery of gases to microorganisms that carry out oxidation-reduction reactions that lead to the breakdown of contaminants. The two main microorganisms involved in the treatment of sulfate wastewater using the MBfR are sulfate-reducing bacteria (SRB) for the reduction of sulfate into sulfide and sulfur-oxidizing bacteria (SOB) for the oxidation of sulfide into S0. In this work, the kinetic processes involved in sulfate reduction and sulfide oxidation for SRB and SOB were modeled using the steady-state biofilm model and mass balances on a completely mixed biofilm reactor. The model results identified trends of substrate removal, biofilm accumulation, and hydraulic retention time (HRT) for the design of the sulfate-treatment system. The HRT required for 97.5% sulfate removal was about 0.1 d and that for 97.5% sulfide removal about 0.2 d. Higher levels of biofilm accumulation occurred with sulfide oxidation due to the larger biomass yield of the SOB. The needed delivery of H2 gas required for sulfate reduction and O2 gas for sulfide oxidation, as well as the alkalinity changes, also were determined based on the removal levels.
ContributorsAppiah Nsiah, Gloria (Author) / Rittmann, Bruce BER (Thesis advisor) / Abbaszadegan, Morteza (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2021
161743-Thumbnail Image.png
Description
The living world is replete with easily observed structural adaptations (e.g. teeth, claws, and stingers), but behavioral adaptations are no less impressive. Conspecific aggression can be defined as any harmful action directed by one animal at another of the same species. Because it is a potentially risky and costly behavior,

The living world is replete with easily observed structural adaptations (e.g. teeth, claws, and stingers), but behavioral adaptations are no less impressive. Conspecific aggression can be defined as any harmful action directed by one animal at another of the same species. Because it is a potentially risky and costly behavior, aggression should be elicited only under optimal conditions. In honeybees, nestmate recognition is considered the driving factor determining whether colony guards will aggress against other honeybees attempting to gain entry to the colony. Models and empirical research support the conclusion that nestmate recognition should be favored over direct kin recognition. Thus, bees tend to use environmentally mediated cues associated with their colonies (e.g. colony odors) to recognize nestmates. The framework of nestmate recognition suggests that non-nestmates should always be aggressed against while nestmates should always be accepted. However, aggression towards nestmates and acceptance of non-nestmates are seen in a wide variety of eusocial insects, including honeybees. These are typically classified as rejection errors and acceptance errors, respectively. As such, they can be explained using signal detection theory and optimal acceptance threshold models, which postulate that recognition errors are inevitable if there is overlap in the cues used to distinguish “desirables” (fitness-enhancing) from “undesirables” (fitness-decrementing) conspecifics. In the context of social insects desirables are presumed to be nestmates and undesirables are presumed to be non-nestmates. I propose that honeybees may make more refined decisions concerning what conspecifics are desirable and undesirable, accounting for at least some of the phenomena previously reported as recognition errors. Some “errors” may be the result of guard bees responding to cues associated with threats and benefits beyond nestmate identity. I show that less threatening neighbors receive less aggression than highly threatening strangers. I show that well-fed colonies exhibit less aggression and that bees from well-fed colonies receive less aggression. I provide evidence that honeybees may decrease aggression towards nestmates and non-nestmate not involved in robbing while increasing aggression towards non-nestmate from a robber colony. Lastly, I show that pollen bearing foragers, regardless of nestmate identity, receive little to no aggression compared to non-pollen bearing foragers.
ContributorsJackson, Jonathan Cole (Author) / Pratt, Stephen (Thesis advisor) / Rutowski, Ronald (Committee member) / Fewell, Jennifer (Committee member) / Amazeen, Nia (Committee member) / Kaftanoglu, Osman (Committee member) / Arizona State University (Publisher)
Created2021
161751-Thumbnail Image.png
Description
In the present study, primarily, gas diffusion layer samples containing microporous layers (MPLs), are fabricated using carbon paper substrate, PUREBLACK® carbon powder and polyethylene glycol (PEG) as pore forming agent. The GDLs are studied in single cell fuel cell, to evaluate the effect of porosity of the micro-porous layer on

In the present study, primarily, gas diffusion layer samples containing microporous layers (MPLs), are fabricated using carbon paper substrate, PUREBLACK® carbon powder and polyethylene glycol (PEG) as pore forming agent. The GDLs are studied in single cell fuel cell, to evaluate the effect of porosity of the micro-porous layer on the performance at different operating relative humidity conditions and compared with commercial GDLs. Scanning electron microscopy (SEM) and contact angle measurements indicate crack-free surface morphology and hydrophobic characteristics of the PUREBLACK® based GDLs, respectively. By varying the wt. % of PEG, fuel cell performance is evaluated under relative humidity conditions of 60 and 100 % using H2/O2 and H2/Air at 70 oC and the durability is also evaluated for the samples without, with 30% PEG and commercial. The fuel cell performance of the GDL with 30 % PEG (with pore volume 1.72 cc.g-1) exhibited higher performance (444 and 432 mW.cm-2 at 60 and 100 % RH conditions, respectively using H2 and air) compared to that without pore forming agent (436 and 397 mW.cm-2).Subsequently, the best performing configuration underwent two different ex-situ methods of accelerated stress testing (AST), in water and hydrogen peroxide (30%), for 1000 and 24 h, respectively. The samples were evaluated via contact angle, SEM, and fuel cell performance, before and after the ASTs, and compared to similar configuration, using carbon powder VULCAN® (XC-72R), and aged in the exact same conditions. Contact angle and SEM demonstrated greater degradation of VULCAN® carbon, especially in hydrogen peroxide, where carbon corrosion caused surface cracks and change in hydrophobicity. The fuel cell performance and durability, evaluated at 60 and 100% RH at 70 oC, using O2 and air as oxidants, confirmed that VULCAN® carbon is more prone to carbon corrosion, with significant performance loss (12-19%) in contrast to PUREBLACK® that demonstrated higher carbon corrosion resistance due to its graphitized surface.
ContributorsAthanasaki, Grigoria (Author) / Kannan, Arunachala Mada A. M. (Thesis advisor) / Nam, Changho (Committee member) / Peng, Xihong (Committee member) / Arizona State University (Publisher)
Created2021
161735-Thumbnail Image.png
Description
Lipolysis or hydrolysis of triglyceride (TG) stored within intracellular lipid droplets (LD), is vital to maintaining metabolic homeostasis in mammals. Regulation of lipolysis and subsequent utilization of liberated fatty acids impacts cellular and organismal functions including body fat accumulation and thermogenesis. Adipose triglyceride lipase (ATGL) is the intracellular rate-limiting enzyme

Lipolysis or hydrolysis of triglyceride (TG) stored within intracellular lipid droplets (LD), is vital to maintaining metabolic homeostasis in mammals. Regulation of lipolysis and subsequent utilization of liberated fatty acids impacts cellular and organismal functions including body fat accumulation and thermogenesis. Adipose triglyceride lipase (ATGL) is the intracellular rate-limiting enzyme responsible for catalyzing hydrolysis of TG to diacylglycerol (DAG), the initial step of the lipolytic reaction. G0/G1 switch gene-2 (G0S2) and hypoxia-inducible gene-2 (HIG2) are selective inhibitors of ATGL. G0S2 facilitates accumulation of TG in the liver and adipose tissue, while HIG2 functions under hypoxic conditions. Sequence analysis and mutagenesis were used to confirm the presence of conserved domains between these proteins, and that these domains are required for efficient binding and inhibition of ATGL. Further analysis revealed a Positive sequence (Pos-Seq)-LD binding motif in G0S2 but not HIG2. The Pos-Seq mediated ATGL-independent localization to LD and was required for achieving maximal inhibition of ATGL activity by G0S2. Identification and mutational analysis of this motif revealed distinct mechanisms for HIG2 and G0S2 LD association. In addition to molecular characterization of known protein inhibitors of lipolysis, an intracellular member of the apolipoprotein L (ApoL) family, ApoL6, was also identified as a LD and mitochondria associated protein expressed in adipose tissue. Brown adipose tissue uses fatty acids as fuel for increasing its energy output as heat during acute responses to cold exposure. A Comprehensive Lab Animal Monitoring System was used to compare heat production at room temperature (RT) and 4oC in transgenic animals overexpressing ApoL6 in brown adipose tissue. Overexpression of ApoL6 delayed utilization of long-chain fatty acids (LCFAs) as a fuel source while promoting an enhanced thermogenic response during initial cold exposure. ApoL6 mediated inhibition of LCFA utilization results from binding of ApoL6 to Mitochondrial Trifunctional Protein (MTP/TFP), which catalyzes mitochondrial β-oxidation. Indirect calorimetry and fasting acute cold exposure experiments suggest the augmented thermogenic profile of ApoL6 transgenic animals is a result of enhanced utilization of medium-chain fatty acids (MCFAs), glucose, and amino acids as fuel sources. Cumulatively these results indicate multiple mechanisms for regulation lipolysis and fatty acid utilization.
ContributorsCampbell, Latoya E (Author) / Lake, Douglas (Thesis advisor) / Liu, Jun (Committee member) / Folmes, Clifford (Committee member) / Sweazea, Karen (Committee member) / Baluch, Debra (Committee member) / Arizona State University (Publisher)
Created2021
161614-Thumbnail Image.png
Description
Parabasalia is a phylum of flagellated protists with a large range of cell sizes, spanning from as little as 7 µm in length (e.g. Pentatrichomonas hominis) to well over 300 µm (e.g. Pseudotrichonympha grassii). Many Parabasalia are associated with animals in mutualistic, parasitic, or commensal relationships. The largest

Parabasalia is a phylum of flagellated protists with a large range of cell sizes, spanning from as little as 7 µm in length (e.g. Pentatrichomonas hominis) to well over 300 µm (e.g. Pseudotrichonympha grassii). Many Parabasalia are associated with animals in mutualistic, parasitic, or commensal relationships. The largest Parabasalia species are obligate mutualists of termites, which help to digest lignocellulose. While the specific digestive roles of different protist species are mostly unknown, Parabasalia with different cell sizes are known to inhabit different regions of the termite hindgut. It is currently unclear whether these size differences are driven by selection or drift, but it is well known that cell size correlates with genome size in eukaryotes. Therefore, in order to gain insight into possible selection pressures or mechanisms for cell size increase, genome sizes were estimated for the five Parabasalia species that inhabit the hindgut of Coptotermes formosanus Shiraki. The cell volumes and C-values for the five protist species are 89,190 µm3 and 147 pg in Pseudotrichonympha grassii, 26,679 µm3 and 56 pg in Holomastigotoides hartmanni, 8,985 µm3 and 29 pg in Holomastigotoides minor, 1,996 µm3 and 12 pg in Cononympha leidyi , and 386 µm3 and 6 pg in Cononympha koidzumii. The positive correlation between genome size and cell size was maintained in this group (R2 = 0.76). These genome sizes are much larger than the previously estimated genome sizes of non-termite associated Parabasalia, which spanned 2-fold ranging from 0.088 pg (in Tetratrichomonas gallinarum) to 0.181 pg (in Trichomonas foetus). With these new estimates, the range now spans over 1,500-fold from 0.088 pg to 147 pg in P. grassii, implying potential differences in the level of selective pressures for genome size in termite-associated Parabasalia compared to other protists.
ContributorsMontoya, Samantha (Author) / Gile, Gillian (Thesis advisor) / Wideman, Jeremy (Committee member) / Chouvenc, Thomas (Committee member) / Arizona State University (Publisher)
Created2021
161616-Thumbnail Image.png
Description
This research investigates how two potential sentinel species (the Galápagos Sea Lion (Zalophus wollebaeki) and the Guiana Dolphin (Sotalia guianensis)) respond to environmental factors, at both the large-scale and fine-scale levels. Sentinel species, defined as organisms able to respond to ecosystem variability and/or change in a timely and measurable way

This research investigates how two potential sentinel species (the Galápagos Sea Lion (Zalophus wollebaeki) and the Guiana Dolphin (Sotalia guianensis)) respond to environmental factors, at both the large-scale and fine-scale levels. Sentinel species, defined as organisms able to respond to ecosystem variability and/or change in a timely and measurable way to nowcast or forecast otherwise unobserved environmental changes, can help mitigate or even avoid changes deleterious to both wildlife and human communities. Using two long-term datasets and a suite of respective social metrics and environmental factors, I analyzed potential external influences on these two species’ behavioral ecology. My overall findings suggest that apex marine mammals respond differently to their surroundings at large-scale vs. fine-scale, and highlight the importance of including a range of environmental factors that include anthropogenic effects. Galápagos Sea Lions specifically respond to thermoregulation-linked factors, such as substrate temperature, and anthropogenic factors such as human presence and activity type. Guiana Dolphin social metrics are significantly related with traits linked to environmental water quality, water transparency. I expand on the sentinel implications of these results and introduce sample methodology and results for sentinel species based on the Guiana Dolphin case study.
ContributorsAbalo, Iroko Akoua Enyo (Author) / Pratt, Stephen S (Thesis advisor) / Polidoro, Beth B (Thesis advisor) / Abbott, Joshua J (Committee member) / Ferry, Lara L (Committee member) / Arizona State University (Publisher)
Created2021