Matching Items (228)
Filtering by

Clear all filters

151718-Thumbnail Image.png
Description
The increasing popularity of Twitter renders improved trustworthiness and relevance assessment of tweets much more important for search. However, given the limitations on the size of tweets, it is hard to extract measures for ranking from the tweet's content alone. I propose a method of ranking tweets by generating a

The increasing popularity of Twitter renders improved trustworthiness and relevance assessment of tweets much more important for search. However, given the limitations on the size of tweets, it is hard to extract measures for ranking from the tweet's content alone. I propose a method of ranking tweets by generating a reputation score for each tweet that is based not just on content, but also additional information from the Twitter ecosystem that consists of users, tweets, and the web pages that tweets link to. This information is obtained by modeling the Twitter ecosystem as a three-layer graph. The reputation score is used to power two novel methods of ranking tweets by propagating the reputation over an agreement graph based on tweets' content similarity. Additionally, I show how the agreement graph helps counter tweet spam. An evaluation of my method on 16~million tweets from the TREC 2011 Microblog Dataset shows that it doubles the precision over baseline Twitter Search and achieves higher precision than current state of the art method. I present a detailed internal empirical evaluation of RAProp in comparison to several alternative approaches proposed by me, as well as external evaluation in comparison to the current state of the art method.
ContributorsRavikumar, Srijith (Author) / Kambhampati, Subbarao (Thesis advisor) / Davulcu, Hasan (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2013
152207-Thumbnail Image.png
Description
Current policies subsidizing or accelerating deployment of photovoltaics (PV) are typically motivated by claims of environmental benefit, such as the reduction of CO2 emissions generated by the fossil-fuel fired power plants that PV is intended to displace. Existing practice is to assess these environmental benefits on a net life-cycle basis,

Current policies subsidizing or accelerating deployment of photovoltaics (PV) are typically motivated by claims of environmental benefit, such as the reduction of CO2 emissions generated by the fossil-fuel fired power plants that PV is intended to displace. Existing practice is to assess these environmental benefits on a net life-cycle basis, where CO2 benefits occurring during use of the PV panels is found to exceed emissions generated during the PV manufacturing phase including materials extraction and manufacture of the PV panels prior to installation. However, this approach neglects to recognize that the environmental costs of CO2 release during manufacture are incurred early, while environmental benefits accrue later. Thus, where specific policy targets suggest meeting CO2 reduction targets established by a certain date, rapid PV deployment may have counter-intuitive, albeit temporary, undesired consequences. Thus, on a cumulative radiative forcing (CRF) basis, the environmental improvements attributable to PV might be realized much later than is currently understood. This phenomenon is particularly acute when PV manufacture occurs in areas using CO2 intensive energy sources (e.g., coal), but deployment occurs in areas with less CO2 intensive electricity sources (e.g., hydro). This thesis builds a dynamic Cumulative Radiative Forcing (CRF) model to examine the inter-temporal warming impacts of PV deployments in three locations: California, Wyoming and Arizona. The model includes the following factors that impact CRF: PV deployment rate, choice of PV technology, pace of PV technology improvements, and CO2 intensity in the electricity mix at manufacturing and deployment locations. Wyoming and California show the highest and lowest CRF benefits as they have the most and least CO2 intensive grids, respectively. CRF payback times are longer than CO2 payback times in all cases. Thin film, CdTe PV technologies have the lowest manufacturing CO2 emissions and therefore the shortest CRF payback times. This model can inform policies intended to fulfill time-sensitive CO2 mitigation goals while minimizing short term radiative forcing.
ContributorsTriplican Ravikumar, Dwarakanath (Author) / Seager, Thomas P (Thesis advisor) / Fraser, Matthew P (Thesis advisor) / Chester, Mikhail V (Committee member) / Sinha, Parikhit (Committee member) / Arizona State University (Publisher)
Created2013
152058-Thumbnail Image.png
Description
There is growing concern over the future availability of water for electricity generation. Because of a rapidly growing population coupled with an arid climate, the Western United States faces a particularly acute water/energy challenge, as installation of new electricity capacity is expected to be required in the areas with the

There is growing concern over the future availability of water for electricity generation. Because of a rapidly growing population coupled with an arid climate, the Western United States faces a particularly acute water/energy challenge, as installation of new electricity capacity is expected to be required in the areas with the most limited water availability. Electricity trading is anticipated to be an important strategy for avoiding further local water stress, especially during drought and in the areas with the most rapidly growing populations. Transfers of electricity imply transfers of "virtual water" - water required for the production of a product. Yet, as a result of sizable demand growth, there may not be excess capacity in the system to support trade as an adaptive response to long lasting drought. As the grid inevitably expands capacity due to higher demand, or adapts to anticipated climate change, capacity additions should be selected and sited to increase system resilience to drought. This paper explores the tradeoff between virtual water and local water/energy infrastructure development for the purpose of enhancing the Western US power grid's resilience to drought. A simple linear model is developed that estimates the economically optimal configuration of the Western US power grid given water constraints. The model indicates that natural gas combined cycle power plants combined with increased interstate trade in power and virtual water provide the greatest opportunity for cost effective and water efficient grid expansion. Such expansion, as well as drought conditions, may shift and increase virtual water trade patterns, as states with ample water resources and a competitive advantage in developing power sources become net exporters, and states with limited water or higher costs become importers.
ContributorsHerron, Seth (Author) / Ruddell, Benjamin L (Thesis advisor) / Ariaratnam, Samuel (Thesis advisor) / Allenby, Braden (Committee member) / Williams, Eric (Committee member) / Arizona State University (Publisher)
Created2013
151951-Thumbnail Image.png
Description
The consumption of feedstocks from agriculture and forestry by current biofuel production has raised concerns about food security and land availability. In the meantime, intensive human activities have created a large amount of marginal lands that require management. This study investigated the viability of aligning land management with biofuel production

The consumption of feedstocks from agriculture and forestry by current biofuel production has raised concerns about food security and land availability. In the meantime, intensive human activities have created a large amount of marginal lands that require management. This study investigated the viability of aligning land management with biofuel production on marginal lands. Biofuel crop production on two types of marginal lands, namely urban vacant lots and abandoned mine lands (AMLs), were assessed. The investigation of biofuel production on urban marginal land was carried out in Pittsburgh between 2008 and 2011, using the sunflower gardens developed by a Pittsburgh non-profit as an example. Results showed that the crops from urban marginal lands were safe for biofuel. The crop yield was 20% of that on agricultural land while the low input agriculture was used in crop cultivation. The energy balance analysis demonstrated that the sunflower gardens could produce a net energy return even at the current low yield. Biofuel production on AML was assessed from experiments conducted in a greenhouse for sunflower, soybean, corn, canola and camelina. The research successfully created an industrial symbiosis by using bauxite as soil amendment to enable plant growth on very acidic mine refuse. Phytoremediation and soil amendments were found to be able to effectively reduce contamination in the AML and its runoff. Results from this research supported that biofuel production on marginal lands could be a unique and feasible option for cultivating biofuel feedstocks.
ContributorsZhao, Xi (Author) / Landis, Amy (Thesis advisor) / Fox, Peter (Committee member) / Chester, Mikhail (Committee member) / Arizona State University (Publisher)
Created2013
151780-Thumbnail Image.png
Description
Objective of this thesis project is to build a prototype using Linear Temporal Logic specifications for generating a 2D motion plan commanding an iRobot to fulfill the specifications. This thesis project was created for Cyber Physical Systems Lab in Arizona State University. The end product of this thesis is creation

Objective of this thesis project is to build a prototype using Linear Temporal Logic specifications for generating a 2D motion plan commanding an iRobot to fulfill the specifications. This thesis project was created for Cyber Physical Systems Lab in Arizona State University. The end product of this thesis is creation of a software solution which can be used in the academia and industry for research in cyber physical systems related applications. The major features of the project are: creating a modular system for motion planning, use of Robot Operating System (ROS), use of triangulation for environment decomposition and using stargazer sensor for localization. The project is built on an open source software called ROS which provides an environment where it is very easy to integrate different modules be it software or hardware on a Linux based platform. Use of ROS implies the project or its modules can be adapted quickly for different applications as the need arises. The final software package created and tested takes a data file as its input which contains the LTL specifications, a symbols list used in the LTL and finally the environment polygon data containing real world coordinates for all polygons and also information on neighbors and parents of each polygon. The software package successfully ran the experiment of coverage, reachability with avoidance and sequencing.
ContributorsPandya, Parth (Author) / Fainekos, Georgios (Thesis advisor) / Dasgupta, Partha (Committee member) / Lee, Yann-Hang (Committee member) / Arizona State University (Publisher)
Created2013
151793-Thumbnail Image.png
Description
Linear Temporal Logic is gaining increasing popularity as a high level specification language for robot motion planning due to its expressive power and scalability of LTL control synthesis algorithms. This formalism, however, requires expert knowledge and makes it inaccessible to non-expert users. This thesis introduces a graphical specification environment to

Linear Temporal Logic is gaining increasing popularity as a high level specification language for robot motion planning due to its expressive power and scalability of LTL control synthesis algorithms. This formalism, however, requires expert knowledge and makes it inaccessible to non-expert users. This thesis introduces a graphical specification environment to create high level motion plans to control robots in the field by converting a visual representation of the motion/task plan into a Linear Temporal Logic (LTL) specification. The visual interface is built on the Android tablet platform and provides functionality to create task plans through a set of well defined gestures and on screen controls. It uses the notion of waypoints to quickly and efficiently describe the motion plan and enables a variety of complex Linear Temporal Logic specifications to be described succinctly and intuitively by the user without the need for the knowledge and understanding of LTL specification. Thus, it opens avenues for its use by personnel in military, warehouse management, and search and rescue missions. This thesis describes the construction of LTL for various scenarios used for robot navigation using the visual interface developed and leverages the use of existing LTL based motion planners to carry out the task plan by a robot.
ContributorsSrinivas, Shashank (Author) / Fainekos, Georgios (Thesis advisor) / Baral, Chitta (Committee member) / Burleson, Winslow (Committee member) / Arizona State University (Publisher)
Created2013
152004-Thumbnail Image.png
Description
To further the efforts producing energy from more renewable sources, microbial electrochemical cells (MXCs) can utilize anode respiring bacteria (ARB) to couple the oxidation of an organic substrate to the delivery of electrons to the anode. Although ARB such as Geobacter and Shewanella have been well-studied in terms of their

To further the efforts producing energy from more renewable sources, microbial electrochemical cells (MXCs) can utilize anode respiring bacteria (ARB) to couple the oxidation of an organic substrate to the delivery of electrons to the anode. Although ARB such as Geobacter and Shewanella have been well-studied in terms of their microbiology and electrochemistry, much is still unknown about the mechanism of electron transfer to the anode. To this end, this thesis seeks to elucidate the complexities of electron transfer existing in Geobacter sulfurreducens biofilms by employing Electrochemical Impedance Spectroscopy (EIS) as the tool of choice. Experiments measuring EIS resistances as a function of growth were used to uncover the potential gradients that emerge in biofilms as they grow and become thicker. While a better understanding of this model ARB is sought, electrochemical characterization of a halophile, Geoalkalibacter subterraneus (Glk. subterraneus), revealed that this organism can function as an ARB and produce seemingly high current densities while consuming different organic substrates, including acetate, butyrate, and glycerol. The importance of identifying and studying novel ARB for broader MXC applications was stressed in this thesis as a potential avenue for tackling some of human energy problems.
ContributorsAjulo, Oluyomi (Author) / Torres, Cesar (Thesis advisor) / Nielsen, David (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Popat, Sudeep (Committee member) / Arizona State University (Publisher)
Created2013
Description
This thesis introduces the Model-Based Development of Multi-iRobot Toolbox (MBDMIRT), a Simulink-based toolbox designed to provide the means to acquire and practice the Model-Based Development (MBD) skills necessary to design real-time embedded system. The toolbox was developed in the Cyber-Physical System Laboratory at Arizona State University. The MBDMIRT toolbox runs

This thesis introduces the Model-Based Development of Multi-iRobot Toolbox (MBDMIRT), a Simulink-based toolbox designed to provide the means to acquire and practice the Model-Based Development (MBD) skills necessary to design real-time embedded system. The toolbox was developed in the Cyber-Physical System Laboratory at Arizona State University. The MBDMIRT toolbox runs under MATLAB/Simulink to simulate the movements of multiple iRobots and to control, after verification by simulation, multiple physical iRobots accordingly. It adopts the Simulink/Stateflow, which exemplifies an approach to MBD, to program the behaviors of the iRobots. The MBDMIRT toolbox reuses and augments the open-source MATLAB-Based Simulator for the iRobot Create from Cornell University to run the simulation. Regarding the mechanism of iRobot control, the MBDMIRT toolbox applies the MATLAB Toolbox for the iRobot Create (MTIC) from United States Naval Academy to command the physical iRobots. The MBDMIRT toolbox supports a timer in both the simulation and the control, which is based on the local clock of the PC running the toolbox. In addition to the build-in sensors of an iRobot, the toolbox can simulate four user-added sensors, which are overhead localization system (OLS), sonar sensors, a camera, and Light Detection And Ranging (LIDAR). While controlling a physical iRobot, the toolbox supports the StarGazer OLS manufactured by HAGISONIC, Inc.
ContributorsSu, Shih-Kai (Author) / Fainekos, Georgios E (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Artemiadis, Panagiotis K (Committee member) / Arizona State University (Publisher)
Created2012
151293-Thumbnail Image.png
Description
Biofuel from microbial biomass is a viable alternative to current energy production practices that could mitigate greenhouse gas levels and reduce dependency on fossil fuels. Sustainable production of microbial biomass requires efficient utilization of nutrients like phosphorus (P). P is a limited resource which is vital for global food security.

Biofuel from microbial biomass is a viable alternative to current energy production practices that could mitigate greenhouse gas levels and reduce dependency on fossil fuels. Sustainable production of microbial biomass requires efficient utilization of nutrients like phosphorus (P). P is a limited resource which is vital for global food security. This paper seeks to understand the fate of P through biofuel production and proposes a proof-of-concept process to recover P from microbial biomass. The photosynthetic cyanobacterium Synechocystis sp. PCC 6803 is found to contain 1.4% P by dry weight. After the crude lipids are extracted for biofuel processing, 92% of the intercellular P is found within the residual biomass. Most intercellular P is associated with nucleic acids which remain within the cell after lipids are extracted. Phospholipids comprise a small percentage of cellular P. A wet chemical advanced oxidation process of adding 30% hydrogen peroxide followed by 10 min of microwave heating converts 92% of the total cellular P from organic-P and polyphosphate into orthophosphate. P was then isolated and concentrated from the complex digested matrix by use of resins. An anion exchange resin impregnated with iron nanoparticles demonstrates high affinity for P by sorbing 98% of the influent P through 20 bed volumes, but only was able to release 23% of it when regenerated. A strong base anion exchange resin sorbed 87% of the influent P through 20 bed volumes then released 50% of it upon regeneration. The overall P recovery process was able to recover 48% of the starting intercellular P into a pure and concentrated nutrient solution available for reuse. Further optimization of elution could improve P recovery, but this provides a proof-of-concept for converting residual biomass after lipid extraction to a beneficial P source.
ContributorsGifford, James McKay (Author) / Westerhoff, Paul (Thesis advisor) / Rittmann, Bruce (Committee member) / Vannela, Ravindhar (Committee member) / Arizona State University (Publisher)
Created2012
152168-Thumbnail Image.png
Description
There has been a lot of research in the field of artificial intelligence about thinking machines. Alan Turing proposed a test to observe a machine's intelligent behaviour with respect to natural language conversation. The Winograd schema challenge is suggested as an alternative, to the Turing test. It needs inferencing capabilities,

There has been a lot of research in the field of artificial intelligence about thinking machines. Alan Turing proposed a test to observe a machine's intelligent behaviour with respect to natural language conversation. The Winograd schema challenge is suggested as an alternative, to the Turing test. It needs inferencing capabilities, reasoning abilities and background knowledge to get the answer right. It involves a coreference resolution task in which a machine is given a sentence containing a situation which involves two entities, one pronoun and some more information about the situation and the machine has to come up with the right resolution of a pronoun to one of the entities. The complexity of the task is increased with the fact that the Winograd sentences are not constrained by one domain or specific sentence structure and it also contains a lot of human proper names. This modification makes the task of association of entities, to one particular word in the sentence, to derive the answer, difficult. I have developed a pronoun resolver system for the confined domain Winograd sentences. I have developed a classifier or filter which takes input sentences and decides to accept or reject them based on a particular criteria. Once the sentence is accepted. I run parsers on it to obtain the detailed analysis. Furthermore I have developed four answering modules which use world knowledge and inferencing mechanisms to try and resolve the pronoun. The four techniques I use are : ConceptNet knowledgebase, Search engine pattern counts,Narrative event chains and sentiment analysis. I have developed a particular aggregation mechanism for the answers from these modules to arrive at a final answer. I have used caching technique for the association relations that I obtain for different modules, so as to boost the performance. I run my system on the standard ‘nyu dataset’ of Winograd sentences and questions. This dataset is then restricted, by my classifier, to 90 sentences. I evaluate my system on this 90 sentence dataset. When I compare my results against the state of the art system on the same dataset, I get nearly 4.5 % improvement in the restricted domain.
ContributorsBudukh, Tejas Ulhas (Author) / Baral, Chitta (Thesis advisor) / VanLehn, Kurt (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2013