Matching Items (5)
Filtering by

Clear all filters

152438-Thumbnail Image.png
Description
Water contamination with nitrate (NO3−) (from fertilizers) and perchlorate (ClO4−) (from rocket fuel and explosives) is a widespread environmental problem. I employed the Membrane Biofilm Reactor (MBfR), a novel bioremediation technology, to treat NO3− and ClO4− in the presence of naturally occurring sulfate (SO42−). In the MBfR, bacteria reduce oxidized

Water contamination with nitrate (NO3−) (from fertilizers) and perchlorate (ClO4−) (from rocket fuel and explosives) is a widespread environmental problem. I employed the Membrane Biofilm Reactor (MBfR), a novel bioremediation technology, to treat NO3− and ClO4− in the presence of naturally occurring sulfate (SO42−). In the MBfR, bacteria reduce oxidized pollutants that act as electron acceptors, and they grow as a biofilm on the outer surface of gas-transfer membranes that deliver the electron donor (hydrogen gas, (H2). The overarching objective of my research was to achieve a comprehensive understanding of ecological interactions among key microbial members in the MBfR when treating polluted water with NO3− and ClO4− in the presence of SO42−. First, I characterized competition and co-existence between denitrifying bacteria (DB) and sulfate-reducing bacteria (SRB) when the loading of either the electron donor or electron acceptor was varied. Then, I assessed the microbial community structure of biofilms mostly populated by DB and SRB, linking structure with function based on the electron-donor bioavailability and electron-acceptor loading. Next, I introduced ClO4− as a second oxidized contaminant and discovered that SRB harm the performance of perchlorate-reducing bacteria (PRB) when the aim is complete ClO4− destruction from a highly contaminated groundwater. SRB competed too successfully for H2 and space in the biofilm, forcing the PRB to unfavorable zones in the biofilm. To better control SRB, I tested a two-stage MBfR for total ClO4− removal from a groundwater highly contaminated with ClO4−. I document successful remediation of ClO4− after controlling SO4 2− reduction by restricting electron-donor availability and increasing the acceptor loading to the second stage reactor. Finally, I evaluated the performance of a two-stage pilot MBfR treating water polluted with NO3− and ClO4−, and I provided a holistic understanding of the microbial community structure and diversity. In summary, the microbial community structure in the MBfR contributes to and can be used to explain/predict successful or failed water bioremediation. Based on this understanding, I developed means to manage the microbial community to achieve desired water-decontamination results. This research shows the benefits of looking "inside the box" for "improving the box".
ContributorsOntiveros-Valencia, Aura (Author) / Rittmann, Bruce E. (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Torres, Cesar I. (Committee member) / Arizona State University (Publisher)
Created2014
156013-Thumbnail Image.png
Description
On average, our society generates ~0.5 ton of municipal solid waste per person annually. Biomass waste can be gasified to generate synthesis gas (syngas), a gas mixture consisting predominantly of CO, CO2, and H2. Syngas, rich in carbon and electrons, can fuel the metabolism of carboxidotrophs, anaerobic microorganisms that

On average, our society generates ~0.5 ton of municipal solid waste per person annually. Biomass waste can be gasified to generate synthesis gas (syngas), a gas mixture consisting predominantly of CO, CO2, and H2. Syngas, rich in carbon and electrons, can fuel the metabolism of carboxidotrophs, anaerobic microorganisms that metabolize CO (a toxic pollutant) and produce biofuels (H2, ethanol) and commodity chemicals (acetate and other fatty acids). Despite the attempts for commercialization of syngas fermentation by several companies, the metabolic processes involved in CO and syngas metabolism are not well understood. This dissertation aims to contribute to the understanding of CO and syngas fermentation by uncovering key microorganisms and understanding their metabolism. For this, microbiology and molecular biology techniques were combined with analytical chemistry analyses and deep sequencing techniques. First, environments where CO is commonly detected, including the seafloor, volcanic sand, and sewage sludge, were explored to identify potential carboxidotrophs. Since carboxidotrophs from sludge consumed CO 1000 faster than those in nature, mesophilic sludge was used as inoculum to enrich for CO- and syngas- metabolizing microbes. Two carboxidotrophs were isolated from this culture: an acetate/ethanol-producer 99% phylogenetically similar to Acetobacterium wieringae and a novel H2-producer, Pleomorphomonas carboxidotrophicus sp. nov. Comparison of CO and syngas fermentation by the CO-enriched culture and the isolates suggested mixed-culture syngas fermentation as a better alternative to ferment CO-rich gases. Advantages of mixed cultures included complete consumption of H2 and CO2 (along with CO), flexibility under different syngas compositions, functional redundancy (for acetate production) and high ethanol production after providing a continuous supply of electrons. Lastly, dilute ethanol solutions, typical of syngas fermentation processes, were upgraded to medium-chain fatty acids (MCFA), biofuel precursors, through the continuous addition of CO. In these bioreactors, methanogens were inhibited and Peptostreptococcaceae and Lachnospiraceae spp. most likely partnered with carboxidotrophs for MCFA production. These results reveal novel microorganisms capable of effectively consuming an atmospheric pollutant, shed light on the interplay between syngas components, microbial communities, and metabolites produced, and support mixed-culture syngas fermentation for the production of a wide variety of biofuels and commodity chemicals.
ContributorsEsquivel Elizondo, Sofia Victoria (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Rittmann, Bruce E. (Committee member) / Delgado, Anca G. (Committee member) / Torres, Cesar I. (Committee member) / Arizona State University (Publisher)
Created2017
157409-Thumbnail Image.png
Description
Trichloroethene (TCE) is a ubiquitous soil and groundwater contaminant. The most common bioremediation approach for TCE relies on the process of reductive dechlorination by Dehalococcoides mccartyi. D. mccartyi use TCE, dichloroethene, and vinyl chloride as electron acceptors and hydrogen as an electron donor. At contaminated sites, reductive dechlorination is typically

Trichloroethene (TCE) is a ubiquitous soil and groundwater contaminant. The most common bioremediation approach for TCE relies on the process of reductive dechlorination by Dehalococcoides mccartyi. D. mccartyi use TCE, dichloroethene, and vinyl chloride as electron acceptors and hydrogen as an electron donor. At contaminated sites, reductive dechlorination is typically promoted by adding a fermentable substrate, which is broken down to short chain fatty acids, simple alcohols, and hydrogen. This study explored microbial chain elongation (MCE), instead of fermentation, to promote TCE reductive dechlorination. In MCE, microbes use simple substrates (e.g., acetate, ethanol) to build medium chain fatty acids and also produce hydrogen during this process. Soil microcosm using TCE and acetate and ethanol as MCE substrates were established under anaerobic conditions. In soil microcosms with synthetic groundwater and natural groundwater, ethene was the main product from TCE reductive dechlorination and butyrate and hydrogen were the main products from MCE. Transfer microcosms using TCE and either acetate and ethanol, ethanol, or acetate were also established. The transfers with TCE and ethanol showed the faster rates of reductive dechlorination and produced more elongated products (i.e., hexanoate). The microbial groups enriched in the soil microcosms likely responsible for chain elongation were most similar to Clostridium genus. These investigations showed the potential for synergistic microbial chain elongation and reductive dechlorination of chlorinated ethenes.
ContributorsRobles, Aide (Author) / Delgado, Anca G. (Thesis advisor) / Torres, Cesar I. (Committee member) / van Paassen, Leon (Committee member) / Arizona State University (Publisher)
Created2019
155160-Thumbnail Image.png
Description
The microbial electrochemical cell (MXC) is a novel environmental-biotechnology platform for renewable energy production from waste streams. The two main goals of MXCs are recovery of renewable energy and production of clean water. Up to now, energy recovery, Coulombic efficiency (CE), and treatment efficiency of MXCs fed with real wastewater

The microbial electrochemical cell (MXC) is a novel environmental-biotechnology platform for renewable energy production from waste streams. The two main goals of MXCs are recovery of renewable energy and production of clean water. Up to now, energy recovery, Coulombic efficiency (CE), and treatment efficiency of MXCs fed with real wastewater have been low. Therefore, the overarching goal of my research was to address the main causes for these low efficiencies; this knowledge will advance MXCs technology toward commercialization.

First, I found that fermentation, not anode respiration, was the rate-limiting step for achieving complete organics removal, along with high current densities and CE. The best performance was achieved by doing most of the fermentation in an independent reactor that preceded the MXC. I also outlined how the efficiency of fermentation inside MXCs can be enhanced in order to make MXCs-based technologies cost-competitive with other anaerobic environmental biotechnologies. I revealed that the carbohydrate and protein contents and the BOD5/COD ratio governed the efficiency of organic-matter fermentation: high protein content and low BOD5/COD ratio were the main causes for low fermentation efficiency.

Next, I showed how a high ammonium concentration can provide kinetic and metabolic advantages or disadvantages for anode-respiring bacteria (ARB) over their competitors, particularly methanogens. When exposed to a relatively high ammonium concentration (i.e., > 2.2 g total ammonia-nitrogen (TAN)/L), the ARB were forced to divert a greater electron flow toward current generation and, consequently, had lower net biomass yield. However, the ARB were relatively more resistant to high free ammonia-nitrogen (FAN) concentrations, up to 200 mg FAN/L. I used FAN to manage ecological interactions among ARB and non-ARB in an MXC fed with fermentable substrate (glucose). Utilizing a combination of chemical, electrochemical, and genomic tools, I found that increased FAN led to higher CE and lower methane (CH4) production by suppressing methanogens. Thus, managing FAN offers a practical means to suppress methanogenesis, instead of using expensive and unrealistic inhibitors. My research findings open up new opportunities for more efficient operation of MXCs; this will enhance MXC scale-up and commercial applications, particularly for energy-positive treatment of waste streams containing recalcitrant organics.
ContributorsMohamed, Mohamed Mahmoud Ali (Author) / Rittmann, Bruce E. (Thesis advisor) / Torres, Cesar I. (Thesis advisor) / Westerhoff, Paul (Committee member) / Parameswaran, Prathap (Committee member) / Arizona State University (Publisher)
Created2016
187699-Thumbnail Image.png
Description
Chlorinated ethenes are among the most prevalent legacy contaminants affecting groundwater quality. A common treatment for chlorinated ethenes in the subsurface is in situ anaerobic bioremediation where the organohalide-respiring bacteria, Dehalococcoides mccartyi, convert the contaminants to non-toxic ethene via hydrogen (H2) dependent reductive dehalogenation. Typically, D. mccartyi obtain

Chlorinated ethenes are among the most prevalent legacy contaminants affecting groundwater quality. A common treatment for chlorinated ethenes in the subsurface is in situ anaerobic bioremediation where the organohalide-respiring bacteria, Dehalococcoides mccartyi, convert the contaminants to non-toxic ethene via hydrogen (H2) dependent reductive dehalogenation. Typically, D. mccartyi obtain H2 through the fermentation of organic substrates by fermentative bacteria. However, stimulation of H2 competing processes causing production of methane (a potent greenhouse gas), rapid substrate consumption of simple substrates, and well/pore clogging by viscous complex substrates often challenge bioremediation, leading to slow rates of dehalogenation or stalls at chlorinated intermediates.This dissertation details the potential of microbial chain elongation as a technology for bioremediation of chlorinated ethenes. In chain elongation, bacteria reliably produce H2 and carboxylates (e.g., butyrate (C4)) using simple compounds (e.g., ethanol (C2) and acetate (C2)) as substrates. Under certain conditions, production of alcohols (e.g., butanol (C4)) can also occur. Here, chain elongation was demonstrated to drive reductive dehalogenation of trichloroethene via direct rapid-release H2 and slow-release H2 during fermentation of elongated products. Results showed chain elongation suppressed methanogenesis, supporting chain elongation as a potential solution for bioremediation when typical fermentable substrates do not meet treatment goals. Next, the potential for chain elongation was evaluated using groundwater and soil from a Superfund site experiencing challenges with bioremediation. Soils from the site were found to contain chain elongating bacteria, while groundwater not previously stimulated with ethanol and acetate was steered to chain elongate with bioaugmentation. Additional chain elongation substrate combinations relevant to bioremediation were identified. Results are being used to inform the design of a pilot study at the site. Lastly, this research identified and demonstrated higher ethanol concentrations, higher total pressures, and higher H2 partial pressure improves chain elongation activity and production of butanol, an important biofuel. These results aid in efforts to make chain elongation relevant as a bioprocess in a circular economy and bioremediation. Cumulatively, this dissertation research demonstrated the potential of chain elongation in bioremediation of chlorinated ethenes, indicating it should be considered when evaluating solutions for contaminated sites.
ContributorsRobles, Aide (Author) / Delgado, Anca G. (Thesis advisor) / Torres, Cesar I. (Committee member) / Bennett, Peter J. (Committee member) / Arizona State University (Publisher)
Created2023