Matching Items (3)
Filtering by

Clear all filters

153178-Thumbnail Image.png
Description
Magnetic Resonance Imaging (MRI) is an efficient non-invasive imaging tool widely used in medical field to produce high quality images. The MRI signal is detected with specifically developed radio frequency (RF) systems or "coils". There are several key parameters to evaluate the performance of RF coils: signal-to-noise ratio (SNR), homogeneity,

Magnetic Resonance Imaging (MRI) is an efficient non-invasive imaging tool widely used in medical field to produce high quality images. The MRI signal is detected with specifically developed radio frequency (RF) systems or "coils". There are several key parameters to evaluate the performance of RF coils: signal-to-noise ratio (SNR), homogeneity, quality factor (Q factor), sensitivity, etc. The choice of coil size and configuration depends on the object to be imaged. While surface coils have better sensitivity, volume coils are often employed to image a larger region of interest (ROI) as they display better spatial homogeneity. For the cell labeling and imaging studies using the newly developed siloxane based nanoemulsions as 1H MR reporter probes, the first step is to determine the sensitivity of signal detection under controlled conditions in vitro. In this thesis, a novel designed 7 Tesla RF volume coil was designed and tested for detection of small quantities of siloxane probe as well as for imaging of labeled tumor spheroid. The procedure contains PCB circuit design, RF probe design, test and subsequent modification. In this report, both theory and design methodology will be discussed.
ContributorsWang, Haiqing (Author) / Kodibagkar, Vikram (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Sadleir, Rosalind (Committee member) / Arizona State University (Publisher)
Created2014
154928-Thumbnail Image.png
Description
Magnetic resonance spectroscopic imaging (MRSI) is a valuable technique for assessing the in vivo spatial profiles of metabolites like N-acetylaspartate (NAA), creatine, choline, and lactate. Changes in metabolite concentrations can help identify tissue heterogeneity, providing prognostic and diagnostic information to the clinician. The increased uptake of glucose by solid tumors

Magnetic resonance spectroscopic imaging (MRSI) is a valuable technique for assessing the in vivo spatial profiles of metabolites like N-acetylaspartate (NAA), creatine, choline, and lactate. Changes in metabolite concentrations can help identify tissue heterogeneity, providing prognostic and diagnostic information to the clinician. The increased uptake of glucose by solid tumors as compared to normal tissues and its conversion to lactate can be exploited for tumor diagnostics, anti-cancer therapy, and in the detection of metastasis. Lactate levels in cancer cells are suggestive of altered metabolism, tumor recurrence, and poor outcome. A dedicated technique like MRSI could contribute to an improved assessment of metabolic abnormalities in the clinical setting, and introduce the possibility of employing non-invasive lactate imaging as a powerful prognostic marker.

However, the long acquisition time in MRSI is a deterrent to its inclusion in clinical protocols due to associated costs, patient discomfort (especially in pediatric patients under anesthesia), and higher susceptibility to motion artifacts. Acceleration strategies like compressed sensing (CS) permit faithful reconstructions even when the k-space is undersampled well below the Nyquist limit. CS is apt for MRSI as spectroscopic data are inherently sparse in multiple dimensions of space and frequency in an appropriate transform domain, for e.g. the wavelet domain. The objective of this research was three-fold: firstly on the preclinical front, to prospectively speed-up spectrally-edited MRSI using CS for rapid mapping of lactate and capture associated changes in response to therapy. Secondly, to retrospectively evaluate CS-MRSI in pediatric patients scanned for various brain-related concerns. Thirdly, to implement prospective CS-MRSI acquisitions on a clinical magnetic resonance imaging (MRI) scanner for fast spectroscopic imaging studies. Both phantom and in vivo results demonstrated a reduction in the scan time by up to 80%, with the accelerated CS-MRSI reconstructions maintaining high spectral fidelity and statistically insignificant errors as compared to the fully sampled reference dataset. Optimization of CS parameters involved identifying an optimal sampling mask for CS-MRSI at each acceleration factor. It is envisioned that time-efficient MRSI realized with optimized CS acceleration would facilitate the clinical acceptance of routine MRSI exams for a quantitative mapping of important biomarkers.
ContributorsVidya Shankar, Rohini (Author) / Kodibagkar, Vikram D (Thesis advisor) / Pipe, James (Committee member) / Chang, John (Committee member) / Sadleir, Rosalind (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2016
155261-Thumbnail Image.png
Description
Dynamic susceptibility contrast MRI (DSC-MRI) is a powerful tool used to quantitatively measure parameters related to blood flow and volume in the brain. The technique is known as a “bolus-tracking” method and relies upon very fast scanning to accurately measure the flow of contrast agent into and out of a

Dynamic susceptibility contrast MRI (DSC-MRI) is a powerful tool used to quantitatively measure parameters related to blood flow and volume in the brain. The technique is known as a “bolus-tracking” method and relies upon very fast scanning to accurately measure the flow of contrast agent into and out of a region of interest. The need for high temporal resolution to measure contrast agent dynamics limits the spatial coverage of perfusion parameter maps which limits the utility of DSC-perfusion studies in pathologies involving the entire brain. Typical clinical DSC-perfusion studies are capable of acquiring 10-15 slices, generally centered on a known lesion or pathology.

The methods developed in this work improve the spatial coverage of whole-brain DSC-MRI by combining a highly efficient 3D spiral k-space trajectory with Generalized Autocalibrating Partial Parallel Acquisition (GRAPPA) parallel imaging without increasing temporal resolution. The proposed method is capable of acquiring 30 slices with a temporal resolution of under 1 second, covering the entire cerebrum with isotropic spatial resolution of 3 mm. Additionally, the acquisition method allows for correction of T1-enhancing leakage effects by virtue of collecting two echoes, which confound DSC perfusion measurements. The proposed DSC-perfusion method results in high quality perfusion parameter maps across a larger volume than is currently available with current clinical standards, improving diagnostic utility of perfusion MRI methods, which ultimately improves patient care.
ContributorsTurley, Dallas C (Author) / Pipe, James G (Thesis advisor) / Kodibagkar, Vikram (Thesis advisor) / Frakes, David (Committee member) / Sadleir, Rosalind (Committee member) / Schmainda, Kathleen (Committee member) / Arizona State University (Publisher)
Created2017