Matching Items (36)
154049-Thumbnail Image.png
Description
A Fiber-Wireless (FiWi) network integrates a passive optical network (PON) with wireless mesh networks (WMNs) to provide high speed backhaul via the PON while offering the flexibility and mobility of a WMN. Generally, increasing the size of a WMN leads to higher wireless interference and longer packet delays. The partitioning

A Fiber-Wireless (FiWi) network integrates a passive optical network (PON) with wireless mesh networks (WMNs) to provide high speed backhaul via the PON while offering the flexibility and mobility of a WMN. Generally, increasing the size of a WMN leads to higher wireless interference and longer packet delays. The partitioning of a large WMN into several smaller WMN clusters, whereby each cluster is served by an Optical Network Unit (ONU) of the PON, is examined. Existing WMN throughput-delay analysis techniques considering the mean load of the nodes at a given hop distance from a gateway (ONU) are unsuitable for the heterogeneous nodal traffic loads arising from clustering. A simple analytical queuing model that considers the individual node loads to accurately characterize the throughput-delay performance of a clustered FiWi network is introduced. The accuracy of the model is verified through extensive simulations. It is found that with sufficient PON bandwidth, clustering substantially improves the FiWi network throughput-delay performance by employing the model to examine the impact of the number of clusters on the network throughput-delay performance. Different traffic models and network designs are also studied to improve the FiWi network performance.
ContributorsChen, Po-Yen (Author) / Reisslein, Martin (Thesis advisor) / Seeling, Patrick (Committee member) / Ying, Lei (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2015
154022-Thumbnail Image.png
Description
There has been a lot of work on the characterization of capacity and achievable rate regions, and rate region outer-bounds for various multi-user channels of interest. Parallel to the developed information theoretic results, practical codes have also been designed for some multi-user channels such as multiple access channels, broadcast channels

There has been a lot of work on the characterization of capacity and achievable rate regions, and rate region outer-bounds for various multi-user channels of interest. Parallel to the developed information theoretic results, practical codes have also been designed for some multi-user channels such as multiple access channels, broadcast channels and relay channels; however, interference channels have not received much attention and only a limited amount of work has been conducted on them. With this motivation, in this dissertation, design of practical and implementable channel codes is studied focusing on multi-user channels with special emphasis on interference channels; in particular, irregular low-density-parity-check codes are exploited for a variety of cases and trellis based codes for short block length designs are performed.

Novel code design approaches are first studied for the two-user Gaussian multiple access channel. Exploiting Gaussian mixture approximation, new methods are proposed wherein the optimized codes are shown to improve upon the available designs and off-the-shelf point-to-point codes applied to the multiple access channel scenario. The code design is then examined for the two-user Gaussian interference channel implementing the Han-Kobayashi encoding and decoding strategy. Compared with the point-to-point codes, the newly designed codes consistently offer better performance. Parallel to this work, code design is explored for the discrete memoryless interference channels wherein the channel inputs and outputs are taken from a finite alphabet and it is demonstrated that the designed codes are superior to the single user codes used with time sharing. Finally, the code design principles are also investigated for the two-user Gaussian interference channel employing trellis-based codes with short block lengths for the case of strong and mixed interference levels.
ContributorsSharifi, Shahrouz (Author) / Duman, Tolga M. (Thesis advisor) / Zhang, Junshan (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2015
154395-Thumbnail Image.png
Description
The integration of passive optical networks (PONs) and wireless mesh networks (WMNs) into Fiber-Wireless (FiWi) networks has recently emerged as a promising strategy for

providing flexible network services at relative high transmission rates. This work investigates the effectiveness of localized routing that prioritizes transmissions over the local gateway to the optical

The integration of passive optical networks (PONs) and wireless mesh networks (WMNs) into Fiber-Wireless (FiWi) networks has recently emerged as a promising strategy for

providing flexible network services at relative high transmission rates. This work investigates the effectiveness of localized routing that prioritizes transmissions over the local gateway to the optical network and avoids wireless packet transmissions in radio zones that do not contain the packet source or destination. Existing routing schemes for FiWi networks consider mainly hop-count and delay metrics over a flat WMN node topology and do not specifically prioritize the local network structure. The combination of clustered and localized routing (CluLoR) performs better in terms of throughput-delay compared to routing schemes that are based on minimum hop-count which do not consider traffic localization. Subsequently, this work also investigates the packet delays when relatively low-rate traffic that has traversed a wireless network is mixed with conventional high-rate PON-only traffic. A range of different FiWi network architectures with different dynamic bandwidth allocation (DBA) mechanisms is considered. The grouping of the optical network units (ONUs) in the double-phase polling (DPP) DBA mechanism in long-range (order of 100~Km) FiWi networks is closely examined, and a novel grouping by cycle length (GCL) strategy that achieves favorable packet delay performance is introduced. At the end, this work proposes a novel backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations (e.g., LTE eNBs) and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateway (S/P-GW). The Sm-GW accommodates flexible number of small cells while reducing the infrastructure requirements at the S-GW of LTE backhaul. In contrast to existing methods, the proposed Sm-GW incorporates the scheduling mechanisms to achieve the network fairness while sharing the resources among all the connected small cells base stations.
ContributorsDashti, Yousef (Author) / Reisslein, Martin (Thesis advisor) / Zhang, Yanchao (Committee member) / Fowler, John (Committee member) / Seeling, Patrick (Committee member) / Arizona State University (Publisher)
Created2016
154202-Thumbnail Image.png
Description
The recent proposal of two-way relaying has attracted much attention due to its promising features for many practical scenarios. Hereby, two users communicate simultaneously in both directions to exchange their messages with the help of a relay node. This doctoral study investigates various aspects of two-way relaying. Specifically, the issue

The recent proposal of two-way relaying has attracted much attention due to its promising features for many practical scenarios. Hereby, two users communicate simultaneously in both directions to exchange their messages with the help of a relay node. This doctoral study investigates various aspects of two-way relaying. Specifically, the issue of asynchronism, lack of channel knowledge, transmission of correlated sources and multi-way relaying techniques involving multiple users are explored.

With the motivation of developing enabling techniques for two-way relay (TWR) channels experiencing excessive synchronization errors, two conceptually-different schemes are proposed to accommodate any relative misalignment between the signals received at any node. By designing a practical transmission/detection mechanism based on orthogonal frequency division multiplexing (OFDM), the proposed schemes perform significantly better than existing competing solutions. In a related direction, differential modulation is implemented for asynchronous TWR systems that lack the channel state information (CSI) knowledge. The challenge in this problem compared to the conventional point-to-point counterpart arises not only from the asynchrony but also from the existence of an interfering signal. Extensive numerical examples, supported by analytical work, are given to demonstrate the advantages of the proposed schemes.

Other important issues considered in this dissertation are related to the extension of the two-way relaying scheme to the multiple-user case, known as the multi-way relaying. First, a distributed source coding solution based on Slepian-Wolf coding is proposed to compress correlated messages close to the information theoretical limits in the context of multi-way relay (MWR) channels. Specifically, the syndrome approach based on low-density parity-check (LDPC) codes is implemented. A number of relaying strategies are considered for this problem offering a tradeoff between performance and complexity. The proposed solutions have shown significant improvements compared to the existing ones in terms of the achievable compression rates. On a different front, a novel approach to channel coding is proposed for the MWR channel based on the implementation of nested codes in a distributed manner. This approach ensures that each node decodes the messages of the other users without requiring complex operations at the relay, and at the same time, providing substantial benefits compared to the traditional routing solution.
ContributorsSalīm, Aḥmad (Author) / Duman, Tolga M. (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2015
157717-Thumbnail Image.png
Description
This dissertation focuses on three different efficiency enhancement methods that are applicable to handset applications. These proposed designs are based on three critical requirements for handset application: 1) Small form factor, 2) CMOS compatibility and 3) high power handling. The three presented methodologies are listed below:

1) A transformer-based power combiner architecture

This dissertation focuses on three different efficiency enhancement methods that are applicable to handset applications. These proposed designs are based on three critical requirements for handset application: 1) Small form factor, 2) CMOS compatibility and 3) high power handling. The three presented methodologies are listed below:

1) A transformer-based power combiner architecture for out-phasing transmitters

2) A current steering DAC-based average power tracking circuit for on-chip power amplifiers (PA)

3) A CMOS-based driver stage for GaN-based switched-mode power amplifiers applicable to fully digital transmitters

This thesis highlights the trends in wireless handsets, the motivates the need for fully-integrated CMOS power amplifier solutions and presents the three novel techniques for reconfigurable and digital CMOS-based PAs. Chapter 3, presents the transformer-based power combiner for out-phasing transmitters. The simulation results reveal that this technique is able to shrink the power combiner area, which is one of the largest parts of the transmitter, by about 50% and as a result, enhances the output power density by 3dB.

The average power tracking technique (APT) integrated with an on-chip CMOS-based power amplifier is explained in Chapter 4. This system is able to achieve up to 32dBm saturated output power with a linear power gain of 20dB in a 45nm CMOS SOI process. The maximum efficiency improvement is about ∆η=15% compared to the same PA without APT. Measurement results show that the proposed method is able to amplify an enhanced-EDGE modulated input signal with a data rate of 70.83kb/sec and generate more than 27dBm of average output power with EVM<5%.

Although small form factor, high battery lifetime, and high volume integration motivate the need for fully digital CMOS transmitters, the output power generated by this type of transmitter is not high enough to satisfy the communication standards. As a result, compound materials such as GaN or GaAs are usually being used in handset applications to increase the output power. Chapter 5 focuses on the analysis and design of two CMOS based driver architectures (cascode and house of cards) for driving a GaN power amplifier. The presented results show that the drivers are able to generate ∆Vout=5V, which is required by the compound transistor, and operate up to 2GHz. Since the CMOS driver is expected to drive an off-chip capacitive load, the interface components, such as bond wires, and decoupling and pad capacitors, play a critical role in the output transient response. Therefore, extensive analysis and simulation results have been done on the interface circuits to investigate their effects on RF transmitter performance. The presented results show that the maximum operating frequency when the driver is connected to a 4pF capacitive load is about 2GHz, which is perfectly matched with the reported values in prior literature.
ContributorsMoallemi, Soroush (Author) / Kitchen, Jennifer (Thesis advisor) / Kiaei, Sayfe (Committee member) / Bakkaloglu, Bertan (Committee member) / Thornton, Trevor (Committee member) / Arizona State University (Publisher)
Created2019
153884-Thumbnail Image.png
Description
This research primarily deals with the design and validation of the protection system for a large scale meshed distribution system. The large scale system simulation (LSSS) is a system level PSCAD model which is used to validate component models for different time-scale platforms, to provide a virtual testing platform for

This research primarily deals with the design and validation of the protection system for a large scale meshed distribution system. The large scale system simulation (LSSS) is a system level PSCAD model which is used to validate component models for different time-scale platforms, to provide a virtual testing platform for the Future Renewable Electric Energy Delivery and Management (FREEDM) system. It is also used to validate the cases of power system protection, renewable energy integration and storage, and load profiles. The protection of the FREEDM system against any abnormal condition is one of the important tasks. The addition of distributed generation and power electronic based solid state transformer adds to the complexity of the protection. The FREEDM loop system has a fault current limiter and in addition, the Solid State Transformer (SST) limits the fault current at 2.0 per unit. Former students at ASU have developed the protection scheme using fiber-optic cable. However, during the NSF-FREEDM site visit, the National Science Foundation (NSF) team regarded the system incompatible for the long distances. Hence, a new protection scheme with a wireless scheme is presented in this thesis. The use of wireless communication is extended to protect the large scale meshed distributed generation from any fault. The trip signal generated by the pilot protection system is used to trigger the FID (fault isolation device) which is an electronic circuit breaker operation (switched off/opening the FIDs). The trip signal must be received and accepted by the SST, and it must block the SST operation immediately. A comprehensive protection system for the large scale meshed distribution system has been developed in PSCAD with the ability to quickly detect the faults. The validation of the protection system is performed by building a hardware model using commercial relays at the ASU power laboratory.
ContributorsSharma, Nitish (Author) / Karady, George G. (Thesis advisor) / Holbert, Keith E. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2015