This dissertation introduces stochastic ordering of instantaneous channel powers of fading channels as a general method to compare the performance of a communication system over two different channels, even when a closed-form expression for the metric may not be available. Such a comparison is with respect to a variety of…

This dissertation introduces stochastic ordering of instantaneous channel powers of fading channels as a general method to compare the performance of a communication system over two different channels, even when a closed-form expression for the metric may not be available. Such a comparison is with respect to a variety of performance metrics such as error rates, outage probability and ergodic capacity, which share common mathematical properties such as monotonicity, convexity or complete monotonicity. Complete monotonicity of a metric, such as the symbol error rate, in conjunction with the stochastic Laplace transform order between two fading channels implies the ordering of the two channels with respect to the metric. While it has been established previously that certain modulation schemes have convex symbol error rates, there is no study of the complete monotonicity of the same, which helps in establishing stronger channel ordering results. Toward this goal, the current research proves for the first time, that all 1-dimensional and 2-dimensional modulations have completely monotone symbol error rates. Furthermore, it is shown that the frequently used parametric fading distributions for modeling line of sight exhibit a monotonicity in the line of sight parameter with respect to the Laplace transform order. While the Laplace transform order can also be used to order fading distributions based on the ergodic capacity, there exist several distributions which are not Laplace transform ordered, although they have ordered ergodic capacities. To address this gap, a new stochastic order called the ergodic capacity order has been proposed herein, which can be used to compare channels based on the ergodic capacity. Using stochastic orders, average performance of systems involving multiple random variables are compared over two different channels. These systems include diversity combining schemes, relay networks, and signal detection over fading channels with non-Gaussian additive noise. This research also addresses the problem of unifying fading distributions. This unification is based on infinite divisibility, which subsumes almost all known fading distributions, and provides simplified expressions for performance metrics, in addition to enabling stochastic ordering.

Recently, the location of the nodes in wireless networks has been modeled as point processes. In this dissertation, various scenarios of wireless communications in large-scale networks modeled as point processes are considered. The first part of the dissertation considers signal reception and detection problems with symmetric alpha stable noise which…

Recently, the location of the nodes in wireless networks has been modeled as point processes. In this dissertation, various scenarios of wireless communications in large-scale networks modeled as point processes are considered. The first part of the dissertation considers signal reception and detection problems with symmetric alpha stable noise which is from an interfering network modeled as a Poisson point process. For the signal reception problem, the performance of space-time coding (STC) over fading channels with alpha stable noise is studied. We derive pairwise error probability (PEP) of orthogonal STCs. For general STCs, we propose a maximum-likelihood (ML) receiver, and its approximation. The resulting asymptotically optimal receiver (AOR) does not depend on noise parameters and is computationally simple, and close to the ML performance. Then, signal detection in coexisting wireless sensor networks (WSNs) is considered. We define a binary hypothesis testing problem for the signal detection in coexisting WSNs. For the problem, we introduce the ML detector and simpler alternatives. The proposed mixed-fractional lower order moment (FLOM) detector is computationally simple and close to the ML performance. Stochastic orders are binary relations defined on probability. The second part of the dissertation introduces stochastic ordering of interferences in large-scale networks modeled as point processes. Since closed-form results for the interference distributions for such networks are only available in limited cases, it is of interest to compare network interferences using stochastic. In this dissertation, conditions on the fading distribution and path-loss model are given to establish stochastic ordering between interferences. Moreover, Laplace functional (LF) ordering is defined between point processes and applied for comparing interference. Then, the LF orderings of general classes of point processes are introduced. It is also shown that the LF ordering is preserved when independent operations such as marking, thinning, random translation, and superposition are applied. The LF ordering of point processes is a useful tool for comparing spatial deployments of wireless networks and can be used to establish comparisons of several performance metrics such as coverage probability, achievable rate, and resource allocation even when closed form expressions for such metrics are unavailable.

The problem of cooperative radar and communications signaling is investigated. Each system typically considers the other system a source of interference. Consequently, the tradition is to have them operate in orthogonal frequency bands. By considering the radar and communications operations to be a single joint system, performance bounds on a…

The problem of cooperative radar and communications signaling is investigated. Each system typically considers the other system a source of interference. Consequently, the tradition is to have them operate in orthogonal frequency bands. By considering the radar and communications operations to be a single joint system, performance bounds on a receiver that observes communications and radar return in the same frequency allocation are derived. Bounds in performance of the joint system is measured in terms of data information rate for communications and radar estimation information rate for the radar. Inner bounds on performance are constructed.

Multiple-channel detection is considered in the context of a sensor network where data can be exchanged directly between sensor nodes that share a common edge in the network graph. Optimal statistical tests used for signal source detection with multiple noisy sensors, such as the Generalized Coherence (GC) estimate, use pairwise…

Multiple-channel detection is considered in the context of a sensor network where data can be exchanged directly between sensor nodes that share a common edge in the network graph. Optimal statistical tests used for signal source detection with multiple noisy sensors, such as the Generalized Coherence (GC) estimate, use pairwise measurements from every pair of sensors in the network and are thus only applicable when the network graph is completely connected, or when data are accumulated at a common fusion center. This thesis presents and exploits a new method that uses maximum-entropy techniques to estimate measurements between pairs of sensors that are not in direct communication, thereby enabling the use of the GC estimate in incompletely connected sensor networks. The research in this thesis culminates in a main conjecture supported by statistical tests regarding the topology of the incomplete network graphs.

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which…

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which is used in most audio and video, reduces transmission time and results in much smaller file sizes. However, this compression can affect quality if it goes too far. The more compression there is on a waveform, the more degradation there is, and once a file is lossy compressed, this process is not reversible. This project will observe the degradation of an audio signal after the application of Singular Value Decomposition compression, a lossy compression that eliminates singular values from a signal’s matrix.