Matching Items (773)
Filtering by

Clear all filters

158535-Thumbnail Image.png
Description
Firms have increasingly taken on the commitment to sustainability due to environmental and social concerns. Environmental and social sustainability can create firm value and social welfare through cost reduction and revenue growth. While indicating a desire to do more, firms face challenges while engaging with stakeholders in their supply chains

Firms have increasingly taken on the commitment to sustainability due to environmental and social concerns. Environmental and social sustainability can create firm value and social welfare through cost reduction and revenue growth. While indicating a desire to do more, firms face challenges while engaging with stakeholders in their supply chains – suppliers and consumers. Suppliers are key partners to achieve cost reduction while customers can be the driver for revenue growth. If firms do not overcome the challenges properly, such a win-win situation of both firms and their supply chain stakeholders may not exist. This dissertation aims to understand and suggest ways to overcome the challenges which firms and their supply chain stakeholders face while collaboratively pursuing sustainability.

In the first essay, I investigate the financial impact of a buyer-initiated supplier-focused sustainability improvement program on suppliers’ profitability. The results indicate that a supplier sustainability program may lead to short-term financial loss but long-term financial gain for suppliers, and this effect is contingent on supplier slack resources. The second essay of this dissertation focuses on the consumers and investigates their reactions to two types of firm environmental sustainability claims – sustainable production versus sustainable consumption. The results indicate that firm sustainable consumption claims increase consumers’ purchase, thus leads to larger firm sales, whereas firm sustainable production claims decrease consumers’ buying intention, then result in smaller firm sales. Therefore, I show that, contrary to extant belief, firm environmental sustainability can decrease consumers’ intention to buy. Finally, a firm may be impacted when some of its upstream or downstream stakeholders, or its own operations, are impacted by a natural disaster, which are becoming more frequent due to climate change. In the third essay I study the joint effect of market attention and donation timing on firm stock returns based on the experiences of firms who donated to the 2017 Hurricane Harvey. I conclude that neither the first donors nor the followers can mitigate the negative stock returns due to disasters. However, firms who match their donation timing with market attention experience less negative stock market returns compared to other counterparts.
ContributorsCheng, Feng (Author) / Dooley, Kevin (Thesis advisor) / Han, Sang-Pil (Committee member) / Polyviou, Mikaella (Committee member) / Arizona State University (Publisher)
Created2020
158564-Thumbnail Image.png
Description
My research is motivated by a rule of thumb that no matter how well a system is designed, some actors fail to fulfill the behavior which is needed to sustain the system. Examples of misbehavior are shirking, rule infraction, and free riding. With a focus on social-ecological systems, this thesis

My research is motivated by a rule of thumb that no matter how well a system is designed, some actors fail to fulfill the behavior which is needed to sustain the system. Examples of misbehavior are shirking, rule infraction, and free riding. With a focus on social-ecological systems, this thesis explored the effectiveness of social feedback mechanisms driven by the two available individual options: the exit option is defined as any response to escape from an objectionable state of affairs; and the voice option as any attempt to stay put and improve the state. Using a stylized dynamic model, the first study investigates how the coexistence of participatory and groundwater market institutions affects government-managed irrigation systems. My findings suggest that patterns of bureaucratic reactions to exit (using private tubewells) and voice (putting pressure on irrigation bureaus) are critical to shaping system dynamics. I also found that the silence option – neither exit nor voice – can impede a further improvement in public infrastructure, but in some cases, can improve public infrastructure dramatically. Using a qualitative comparative analysis of 30 self-governing fishing groups in South Korea, the second study examines how resource mobility, group size, and Ostrom’s Design Principles for rule enforcement can co-determine the effectiveness of the voice option in self-controlling rule infractions. Results suggest that the informal mechanism for conflict resolution is a necessary condition for successful self-governance of local fisheries and that even if rules for monitoring and graduated sanctions are not in use, groups can be successful when they harvest only stationary resources. Using an agent-based model of public good provision, the third study explores under what socioeconomic conditions the exit option – neither producing nor consuming collective benefits – can work effectively to enhance levels of cooperation. The model results suggest that the exit option contributes to the spread of cooperators in mid- and large-size groups at the moderate level of exit payoff, given that group interaction occurs to increase the number of cooperators.
ContributorsShin, Hoon Cheol (Author) / Anderies, John M (Thesis advisor) / Abbott, Joshua K (Committee member) / Janssen, Marcus A (Committee member) / Arizona State University (Publisher)
Created2020
158565-Thumbnail Image.png
Description
Making significant progress on the U.N. Sustainable Development Goals (SDGs) needs change agents equipped with key competencies in sustainability. While thousands of sustainability programs have emerged at various educational levels over the past decade, there is, as of yet, no reliable way to assess if these programs successfully convey key

Making significant progress on the U.N. Sustainable Development Goals (SDGs) needs change agents equipped with key competencies in sustainability. While thousands of sustainability programs have emerged at various educational levels over the past decade, there is, as of yet, no reliable way to assess if these programs successfully convey key competencies in sustainability. This dissertation contributes to addressing this gap in three ways. First, it reviews the body of work on key competencies in sustainability. Based on broad agreement around five key competencies as well as an emerging set of three, an extended framework is outlined that can be used as unified set of learning objectives across sustainability programs. The next chapter reviews the scholarly work on assessing sustainability competencies. Based on this review, a typology of assessment tools is proposed offering guidance to both educators and researchers. Finally, drawing on experience of the four-year “Educating Future Change Agents” project, the last chapter explores the results from a diverse set of competency assessments in numerous courses. The study appraises assessment practices and results to demonstrate opportunities and challenges in the current state of assessing key competencies in sustainability. The results of this doctoral thesis are expected to make a practical and scholarly contribution to the teaching and learning in sustainability programs, in particular with regards to reliably assessing key competencies in sustainability.
ContributorsRedman, Aaron (Author) / Wiek, Arnim (Thesis advisor) / Barth, Matthias (Committee member) / Basile, George (Committee member) / Fischer, Daniel (Committee member) / Mochizuki, Yoko (Committee member) / Arizona State University (Publisher)
Created2020
158601-Thumbnail Image.png
Description
Energy projects have the potential to provide critical services for human well-being and help eradicate poverty. However, too many projects fail because their approach oversimplifies the problem to energy poverty: viewing it as a narrow problem of access to energy services and technologies. This thesis presents an alternative paradigm for

Energy projects have the potential to provide critical services for human well-being and help eradicate poverty. However, too many projects fail because their approach oversimplifies the problem to energy poverty: viewing it as a narrow problem of access to energy services and technologies. This thesis presents an alternative paradigm for energy project development, grounded in theories of socio-energy systems, recognizing that energy and poverty coexist as a social, economic, and technological problem.

First, it shows that social, economic, and energy insecurity creates a complex energy-poverty nexus, undermining equitable, fair, and sustainable energy futures in marginalized communities. Indirect and access-based measures of energy poverty are a mismatch for the complexity of the energy-poverty nexus. The thesis, using the concept of social value of energy, develops a methodology for systematically mapping benefits, burdens and externalities of the energy system, illustrated using empirical investigations in communities in Nepal, India, Brazil, and Philippines. The thesis argues that key determinants of the energy-poverty nexus are the functional and economic capabilities of users, stressors and resulting thresholds of capabilities characterizing the energy and poverty relationship. It proposes ‘energy thriving’ as an alternative standard for evaluating project outcomes, requiring energy systems to not only remedy human well-being deficits but create enabling conditions for discovering higher forms of well-being.

Second, a novel, experimental approach to sustainability interventions is developed, to improve the outcomes of energy projects. The thesis presents results from a test bed for community sustainability interventions established in the village of Rio Claro in Brazil, to test innovative project design strategies and develop a primer for co-producing sustainable solutions. The Sustainable Rio Claro 2020 initiative served as a longitudinal experiment in participatory collective action for sustainable futures.

Finally, results are discussed from a collaborative project with grassroots practitioners to understand the energy-poverty nexus, map the social value of energy and develop energy thriving solutions. Partnering with local private and non-profit organizations in Uganda, Bolivia, Nepal and Philippines, the project evaluated and refined methods for designing and implementing innovative energy projects using the theoretical ideas developed in the thesis, subsequently developing a practitioner toolkit for the purpose.
ContributorsBiswas, Saurabh (Author) / Miller, Clark A. (Thesis advisor) / Wiek, Arnim (Committee member) / Janssen, Marcus A (Committee member) / Arizona State University (Publisher)
Created2020
157709-Thumbnail Image.png
Description
This dissertation aims at developing novel materials and processing routes using alkali activated aluminosilicate binders for porous (lightweight) geopolymer matrices and 3D-printing concrete applications. The major research objectives are executed in different stages. Stage 1 includes developing synthesis routes, microstructural characterization, and performance characterization of a family of economical, multifunctional

This dissertation aims at developing novel materials and processing routes using alkali activated aluminosilicate binders for porous (lightweight) geopolymer matrices and 3D-printing concrete applications. The major research objectives are executed in different stages. Stage 1 includes developing synthesis routes, microstructural characterization, and performance characterization of a family of economical, multifunctional porous ceramics developed through geopolymerization of an abundant volcanic tuff (aluminosilicate mineral) as the primary source material. Metakaolin, silica fume, alumina powder, and pure silicon powder are also used as additional ingredients when necessary and activated by potassium-based alkaline agents. In Stage 2, a processing route was developed to synthesize lightweight geopolymer matrices from fly ash through carbonate-based activation. Sodium carbonate (Na2CO3) was used in this study to produce controlled pores through the release of CO2 during the low-temperature decomposition of Na2CO3. Stage 3 focuses on 3D printing of binders using geopolymeric binders along with several OPC-based 3D printable binders. In Stage 4, synthesis and characterization of 3D-printable foamed fly ash-based geopolymer matrices for thermal insulation is the focus. A surfactant-based foaming process, multi-step mixing that ensures foam jamming transition and thus a dry foam, and microstructural packing to ensure adequate skeletal density are implemented to develop foamed suspensions amenable to 3D-printing. The last stage of this research develops 3D-printable alkali-activated ground granulated blast furnace slag mixture. Slag is used as the source of aluminosilicate and shows excellent mechanical properties when activated by highly alkaline activator (NaOH + sodium silicate solution). However, alkali activated slag sets and hardens rapidly which is undesirable for 3D printing. Thus, a novel mixing procedure is developed to significantly extend the setting time of slag activated with an alkaline activator to suit 3D printing applications without the use of any retarding admixtures. This dissertation, thus advances the field of sustainable and 3D-printable matrices and opens up a new avenue for faster and economical construction using specialized materials.
ContributorsAlghamdi, Hussam Suhail G (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Abbaszadegan, Morteza (Committee member) / Bhate, Dhruv (Committee member) / Arizona State University (Publisher)
Created2019
158303-Thumbnail Image.png
Description
In 2018, building energy use accounted for over 40% of total primary energy consumption in the United States; moreover, buildings account for ~40% of national CO2 emissions. One method for curbing energy use in buildings is to apply Demand Side Management (DSM) strategies, which focus on reducing the energy

In 2018, building energy use accounted for over 40% of total primary energy consumption in the United States; moreover, buildings account for ~40% of national CO2 emissions. One method for curbing energy use in buildings is to apply Demand Side Management (DSM) strategies, which focus on reducing the energy demand through various technological and operational approaches in different building sectors.

This PhD research examines the integration of DSM strategies in existing residential and commercial buildings in the Phoenix, Arizona metropolitan area, a hot-arid climate. The author proposes three different case studies to evaluate the effectiveness of one DSM strategy in buildings, namely the integration of Phase Change Materials (PCMs). PCMs store energy in the freezing process and use that stored energy in the melting process to reduce the energy demand. The goal of these case studies is to analyze the potential of each strategy to reduce peak load and overall energy consumption in existing buildings.

First, this dissertation discusses the efficacy of coupling PCMs with precooling strategies in residential buildings to reduce peak demand. The author took a case study approach and simulated two precooling strategies, with and without PCM integration, in two sample single-family homes to assess the impact of the DSM strategies (i.e., precooling and PCM integration) on load shifting and load shedding in each home.

Second, this research addresses the feasibility of using PCMs as sensible and latent heat storage in commercial buildings. The author documents the process of choosing buildings for PCM installation, as well as the selection of PCMs for retrofitting purposes. Commercial building case studies compare experimental and simulation results, focusing on the impact of the PCMs on reducing the total annual energy demand and energy cost.

Finally, this research proposes a novel process for selecting PCMs as energy efficiency measures for building retrofits. This process facilitates the selection of a building and PCM that are complementary. Implementation of this process has not yet been tested; however, the process was developed based on experimental and simulation results from prior studies, and it would alleviate many of the PCM performance issues documented in those studies.
ContributorsAskari Tari, Neda (Author) / Parrish, Kristen (Thesis advisor) / Bryan, Harvey (Committee member) / Reddy, T. Agami (Committee member) / Arizona State University (Publisher)
Created2020
158376-Thumbnail Image.png
Description
The circular economy is viewed as a solution to many of the environmental and social ills that the linear economy has exacerbated. Whether it is through refill solutions or redesigning a cardboard shipping container, fast-moving consumer goods (FMCG) brands are rethinking the way their products are delivered to consumers through

The circular economy is viewed as a solution to many of the environmental and social ills that the linear economy has exacerbated. Whether it is through refill solutions or redesigning a cardboard shipping container, fast-moving consumer goods (FMCG) brands are rethinking the way their products are delivered to consumers through business model innovations that promote circularity. The consumer plays the important, often overlooked, role of enabler within circular business models. This study aims to increase broader understanding of what motivates circular consumption of fast-moving consumer goods while analyzing the relationship between motivators and the behaviors required to participate. Semi-structured interviews provide insights from consumers who are currently purchasing household cleansers from brands that operate with a circular business model. Results from this study highlight a group of consumers that are distinguished by their common desire to reduce their personal consumption of plastics. There is clear indication that these consumers are in fact seeking out ways to consume more sustainably. A significant subset of this group expresses concern regarding ingredients used in the products. Health concerns for themselves, their family, or a pet are driving a desire to understand product ingredients. There is evidence to indicate that the concern for personal consumption of plastics is being driven by information distributed via social media and supported by targeted advertisements for brands that address this concern.
ContributorsBrown, Jennifer B (Author) / Dooley, Kevin (Thesis advisor) / Fischer, Daniel (Committee member) / Buch, Rajesh (Committee member) / Arizona State University (Publisher)
Created2020
158325-Thumbnail Image.png
Description
Humans have modified land systems for centuries in pursuit of a wide range of social and ecological benefits. Recent decades have seen an increase in the magnitude and scale of land system modification (e.g., the Anthropocene) but also a growing recognition and interest in generating land systems that balance environmental

Humans have modified land systems for centuries in pursuit of a wide range of social and ecological benefits. Recent decades have seen an increase in the magnitude and scale of land system modification (e.g., the Anthropocene) but also a growing recognition and interest in generating land systems that balance environmental and human well-being. This dissertation focused on three case studies operating at distinctive spatial scales in which broad socio-economic or political-institutional drivers affected land systems, with consequences for the environmental conditions of that system. Employing a land system architecture (LSA) framework and using landscape metrics to quantify landscape composition and configuration from satellite imagery, each case linked these drivers to changes in LSA and environmental outcomes.

The first paper of this dissertation found that divergent design intentions lead to unique trajectories for LSA, the urban heat island effect, and bird community at two urban riparian sites in the Phoenix metropolitan area. The second paper examined institutional shifts that occurred during Cuba’s “special period in time of peace” and found that the resulting land tenure changes both modified and maintained the LSA of the country, changing cropland but preserving forest land. The third paper found that globalized forces may be contributing to the homogenizing urban form of large, populous cities in China, India, and the United States—especially for the ten largest cities in each country—with implications for surface urban heat island intensity. Expanding knowledge on social drivers of land system and environmental change provides insights on designing landscapes that optimize for a range of social and ecological trade-offs.
ContributorsStuhlmacher, Michelle (Author) / Turner, II, Billie L. (Thesis advisor) / Georgescu, Matei (Thesis advisor) / Frazier, Amy E. (Committee member) / Kim, Yushim (Committee member) / Arizona State University (Publisher)
Created2020
158195-Thumbnail Image.png
Description
Employee-owned businesses, benefit corporations, social enterprises, and other sustainability entrepreneurship innovations are responding to challenges such as climate change, economic inequalities, and unethical business behavior. Academic programs to date, however, often fall short in sufficiently equipping students with competencies in sustainability entrepreneurship – from a coherent set of learning objectives,

Employee-owned businesses, benefit corporations, social enterprises, and other sustainability entrepreneurship innovations are responding to challenges such as climate change, economic inequalities, and unethical business behavior. Academic programs to date, however, often fall short in sufficiently equipping students with competencies in sustainability entrepreneurship – from a coherent set of learning objectives, through effective and engaging pedagogies, to rigorous assessment of learning outcomes. This dissertation contributes to bridging these gaps. The first study proposes a process-oriented and literature-based framework of sustainability entrepreneurship competencies. It offers a general vision for students, faculty, and entrepreneurs, as well as for the design of curricula, courses, and assessments. The second study presents an exploration into the nature of sustainability entrepreneurship courses, with a focus on teaching and learning processes. Using pioneering courses at Arizona State University, the study analyzes and compares the links between learning objectives, pedagogies, and learning outcomes. Based on document analysis and semi-structured interviews with course instructors, the study identifies cognitive apprenticeship from input processing to experimentation, constructive alignment from learning objectives to assessments, and curriculum-level coordination across courses as key success factors of sustainability entrepreneurship education. The result of this study can inform instructors and researchers in applying and further substantiating effective educational models for future entrepreneurs. The third study addresses the key question of competence assessment: what are reliable tools for assessing students’ competence in sustainability entrepreneurship? This study developed and tested a novel tool for assessing students’ competence in sustainability entrepreneurship through in-vivo simulated professional situations. The tool was in different settings and evaluated against a set of criteria derived from the literature. To inform educators in business and management programs, this study discusses and concludes under which conditions this assessment tool seems most effective, as well as improvement for future applications of the tool.
ContributorsFoucrier, Tamsin (Author) / Wiek, Arnim (Thesis advisor) / Basile, George (Thesis advisor) / Barth, Matthias (Committee member) / Arizona State University (Publisher)
Created2020
158203-Thumbnail Image.png
Description
As the global community raises concerns regarding the ever-increasing urgency of climate change, efforts to explore innovative strategies in the fight against this anthropogenic threat is growing. Along with other greenhouse gas mitigation technologies, Direct Air Capture (DAC) or the technology of removing carbon dioxide directly from the air has

As the global community raises concerns regarding the ever-increasing urgency of climate change, efforts to explore innovative strategies in the fight against this anthropogenic threat is growing. Along with other greenhouse gas mitigation technologies, Direct Air Capture (DAC) or the technology of removing carbon dioxide directly from the air has received considerable attention. As an emerging technology, the cost of DAC has been the prime focus not only in scientific society but also between entrepreneurs and policymakers. While skeptics are concerned about the high cost and impact of DAC implementation at scales comparable to the magnitude of climate change, industrial practitioners have demonstrated a pragmatic path to cost reduction. Based on the latest advancements in the field, this dissertation investigates the economic feasibility of DAC and its role in future energy systems. With a focus on the economics of carbon capture, this work compares DAC with other carbon capture technologies from a systemic perspective. Moreover, DAC’s major expenses are investigated to highlight critical improvements necessary for commercialization. In this dissertation, DAC is treated as a backstop mitigation technology that can address carbon dioxide emissions regardless of the source of emission. DAC determines the price of carbon dioxide removal when other mitigation technologies fall short in meeting their goals. The results indicate that DAC, even at its current price, is a reliable backup and is competitive with more mature technologies such as post-combustion capture. To reduce the cost, the most crucial component of a DAC design, i.e., the sorbent material, must be the centerpiece of innovation. In conclusion, DAC demonstrates the potential for not only negative emissions (carbon dioxide removal with the purpose of addressing past emissions), but also for addressing today’s emissions. The results emphasize that by choosing an effective scale-up strategy, DAC can become sufficiently cheap to play a crucial role in decarbonizing the energy system in the near future. Compared to other large-scale decarbonization strategies, DAC can achieve this goal with the least impact on our existing energy infrastructure.
ContributorsAzarabadi, Habib (Author) / Lackner, Klaus S (Thesis advisor) / Allenby, Braden R. (Committee member) / Dirks, Gary W (Committee member) / Reddy, Agami (Committee member) / Arizona State University (Publisher)
Created2020