Matching Items (20)
Filtering by

Clear all filters

151895-Thumbnail Image.png
Description
Since its launch by the US Green Building Council (USGBC), Leadership in Energy and Environmental Design (LEED) certification has been postured as the "gold standard" for environmentally conscious, sustainable building design, construction and operations. However, as a "living measurement", one which requires ongoing evaluation and reporting of attainment and compliance

Since its launch by the US Green Building Council (USGBC), Leadership in Energy and Environmental Design (LEED) certification has been postured as the "gold standard" for environmentally conscious, sustainable building design, construction and operations. However, as a "living measurement", one which requires ongoing evaluation and reporting of attainment and compliance with LEED certification requirements, there is none. Once awarded, LEED certification does not have a required reporting component to effectively track continued adherence to LEED standards. In addition, there is no expiry tied to the certification; once obtained, a LEED certification rating is presumed to be a valid representation of project certification status. Therefore, LEED lacks a requirement to demonstrate environmental impact of construction materials and building systems over the entire life of the project. Consequently, LEED certification is merely a label rather than a true representation of ongoing adherence to program performance requirements over time. Without continued monitoring and reporting of building design and construction features, and in the absence of recertification requirements, LEED is, in reality, a gold star rather than a gold standard. This thesis examines the lack of required ongoing monitoring, reporting, or recertification requirements following the award by the USGBC of LEED certification; compares LEED with other international programs which do have ongoing reporting or recertification requirements; demonstrates the need and benefit of ongoing reporting or recertification requirements; and explores possible methods for implementation of mandatory reporting requirements within the program.
ContributorsCarpenter, Anne Therese (Author) / Olson, Larry (Thesis advisor) / Hild, Nicholas (Committee member) / Brown, Albert (Committee member) / Arizona State University (Publisher)
Created2013
150253-Thumbnail Image.png
Description
Second-generation biofuel feedstocks are currently grown in land-based systems that use valuable resources like water, electricity and fertilizer. This study investigates the potential of near-shore marine (ocean) seawater filtration as a source of planktonic biomass for biofuel production. Mixed marine organisms in the size range of 20µm to 500µm were

Second-generation biofuel feedstocks are currently grown in land-based systems that use valuable resources like water, electricity and fertilizer. This study investigates the potential of near-shore marine (ocean) seawater filtration as a source of planktonic biomass for biofuel production. Mixed marine organisms in the size range of 20µm to 500µm were isolated from the University of California, Santa Barbara (UCSB) seawater filtration system during weekly backwash events between the months of April and August, 2011. The quantity of organic material produced was determined by sample combustion and calculation of ash-free dry weights. Qualitative investigation required density gradient separation with the heavy liquid sodium metatungstate followed by direct transesterification and gas chromatography with mass spectrometry (GC-MS) of the fatty acid methyl esters (FAME) produced. A maximum of 0.083g/L of dried organic material was produced in a single backwash event and a study average of 0.036g/L was calculated. This equates to an average weekly value of 7,674.75g of dried organic material produced from the filtration of approximately 24,417,792 liters of seawater. Temporal variations were limited. Organic quantities decreased over the course of the study. Bio-fouling effects from mussel overgrowth inexplicably increased production values when compared to un-fouled seawater supply lines. FAMEs (biodiesel) averaged 0.004% of the dried organic material with 0.36ml of biodiesel produced per week, on average. C16:0 and C22:6n3 fatty acids comprised the majority of the fatty acids in the samples. Saturated fatty acids made up 30.71% to 44.09% and unsaturated forms comprised 55.90% to 66.32% of the total chemical composition. Both quantities and qualities of organics and FAMEs were unrealistic for use as biodiesel but sample size limitations, system design, geographic and temporal factors may have impacted study results.
ContributorsPierre, Christophe (Author) / Olson, Larry (Thesis advisor) / Sommerfeld, Milton (Committee member) / Brown, Albert (Committee member) / Arizona State University (Publisher)
Created2011
149458-Thumbnail Image.png
Description
With increasing interest in sustainability and green building, organizations are implementing programs such as Leadership in Energy and Environmental Design for Existing Buildings: Operations and Maintenance (LEED-EB) in order to focus corporate sustainability goals on the operations of a facility and the practices of the building occupants. Green building programs

With increasing interest in sustainability and green building, organizations are implementing programs such as Leadership in Energy and Environmental Design for Existing Buildings: Operations and Maintenance (LEED-EB) in order to focus corporate sustainability goals on the operations of a facility and the practices of the building occupants. Green building programs help reduce the impact of a facility and bring about several environmental benefits including but not limited to energy conservation, water conservation and material conservation. In addition to various environmental benefits, green building programs can help companies become more efficient. The problem is that organizations are not always successful in their pursuits to achieve sustainability goals. It frequently take years to implement a program, and in many cases the goals for sustainability never come to fruition, when in the mean time resources are wasted, money is spent needlessly and opportunities are lost forever. This thesis addresses how the Six Sigma methodologies used by so many to implement change in their organizations could be applied to the LEED-EB program to help companies achieve sustainability results. A qualitative analysis of the Six Sigma methodologies was performed to determine if and how a LEED-EB program might utilize such methods. The two programs were found to be compatible and several areas for improvements to implementing a LEED-EB program were identified.
ContributorsFurphy, Kimberly (Author) / Hild, Nicholas (Thesis advisor) / Olson, Larry (Committee member) / Sullivan, Kenneth (Committee member) / Arizona State University (Publisher)
Created2010
148164-Thumbnail Image.png
Description

Waste pickers are the victims of harsh economic and social factors that have hurt many developing countries and billions of people around the world. Due to the rise of industrialization since the 19th century, waste and disposable resources have been discarded around the world to provide more resources, products, and

Waste pickers are the victims of harsh economic and social factors that have hurt many developing countries and billions of people around the world. Due to the rise of industrialization since the 19th century, waste and disposable resources have been discarded around the world to provide more resources, products, and services to wealthy countries. This has put developing countries in a precarious position where people have had very few economic opportunities besides taking on the role of waste pickers, who not only face physical health consequences due to the work they do but also face exclusion from society due to the negative views of waste pickers. Many people view waste pickers as scavengers and people who survive off of doing dirty work, which creates tensions between waste pickers and others in society. This even leads to many countries outlawing waste picking and has led to the brutal treatment of waste pickers throughout the world and has even led to thousands of waste pickers being killed by anti-waste picker groups and law enforcement organizations in many countries. <br/> Waste pickers are often at the bottom of supply-chains as they take resources that have been used and discarded, and provide them to recyclers, waste management organizations, and others who are able to turn these resources into usable materials again. Waste pickers do not have many opportunities to rise above the situation they are in as waste picking has become the only option for many people who need to provide for themselves and their families. They are not compensated very well for the work they do, which also contributes to the situation where waste pickers are forced into a position of severe health risks, backlash from society and governments, not being able to seek better opportunities due to a lack of earning potential, and not being connected with end-users. Now is the time to create new business models that solve these large problems in our global society and create a sustainable way to ensure that waste pickers are treated properly around the world.

ContributorsKidd, Isabella Joy (Co-author) / Kapps, Jack (Co-author) / Urbina-Bernal, Alejandro (Thesis director) / Byrne, Jared (Committee member) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Morrison School of Agribusiness (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148278-Thumbnail Image.png
Description

With the rise of fast fashion and its now apparent effects on climate change, there is an evident need for change in terms of how we as individuals use our clothing and footwear. Our team has created Ray Fashion Inc., a sustainable footwear company that focuses on implementing the circular

With the rise of fast fashion and its now apparent effects on climate change, there is an evident need for change in terms of how we as individuals use our clothing and footwear. Our team has created Ray Fashion Inc., a sustainable footwear company that focuses on implementing the circular economy to reduce the amount of waste generated in shoe creation. We have designed a sandal that accommodates the rapid consumption element of fast fashion with a business model that promotes sustainability through a buy-back method to upcycle and retain our materials.

ContributorsSuresh Kumar, Roshni (Co-author) / Yang, Andrea (Co-author) / Liao, Yuxin (Co-author) / Byrne, Jared (Thesis director) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148330-Thumbnail Image.png
Description

Utilizing ASU’s cardboard waste to build furniture products for students living in residence halls will assist in solving multiple problems for students, the university and the environment. Our business will alleviate the problems of excessive cardboard waste in the dumpsters, the lack of certain furniture items which are not provided

Utilizing ASU’s cardboard waste to build furniture products for students living in residence halls will assist in solving multiple problems for students, the university and the environment. Our business will alleviate the problems of excessive cardboard waste in the dumpsters, the lack of certain furniture items which are not provided by the residence halls at move-in, and ultimately address the lack of low-cost, up-cycled furniture products on the market.

ContributorsNorvell, Macey Elizabeth (Co-author) / Islam, Shauda (Co-author) / Werner, Isabella (Co-author) / Byrne, Jared (Thesis director) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Department of Marketing (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148070-Thumbnail Image.png
Description

Our Founders Lab team — Jacob Benevento, Sydney Evans, and Alec Whiteley — participated in a year-long entrepreneurial journey that led to the creation and launch of our venture, Certified Circular. Certified Circular is a program that certifies on-campus events for implementing circular practices into their activities as well as

Our Founders Lab team — Jacob Benevento, Sydney Evans, and Alec Whiteley — participated in a year-long entrepreneurial journey that led to the creation and launch of our venture, Certified Circular. Certified Circular is a program that certifies on-campus events for implementing circular practices into their activities as well as off-campus businesses. The venture was formed in response to our group’s propelling question and industry selection which called on us to create and market a venture within the ethical circular economy.

ContributorsEvans, Sydney Nicole Kollar (Co-author) / Benevento, Jacob (Co-author) / Whiteley, Alec (Co-author) / Byrne, Jared (Thesis director) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Department of Supply Chain Management (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148281-Thumbnail Image.png
Description

With the rise of fast fashion and its now apparent effects on climate change, there is an evident need for change in terms of how we as individuals use our clothing and footwear. Our team has created Ray Fashion Inc., a sustainable footwear company that focuses on implementing the circular

With the rise of fast fashion and its now apparent effects on climate change, there is an evident need for change in terms of how we as individuals use our clothing and footwear. Our team has created Ray Fashion Inc., a sustainable footwear company that focuses on implementing the circular economy to reduce the amount of waste generated in shoe creation. We have designed a sandal that accommodates the rapid consumption element of fast fashion with a business model that promotes sustainability through a buy-back method to upcycle and retain our materials.

ContributorsLiao, Yuxin (Co-author) / Yang, Andrea (Co-author) / Suresh Kumar, Roshni (Co-author) / Byrne, Jared (Thesis director) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Department of Finance (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148320-Thumbnail Image.png
Description

With the rise of fast fashion and its now apparent effects on climate change, there is an evident need for change in terms of how we as individuals use our clothing and footwear. Our team has created Ray Fashion Inc., a sustainable footwear company that focuses on implementing the circular

With the rise of fast fashion and its now apparent effects on climate change, there is an evident need for change in terms of how we as individuals use our clothing and footwear. Our team has created Ray Fashion Inc., a sustainable footwear company that focuses on implementing the circular economy to reduce the amount of waste generated in shoe creation. We have designed a sandal that accommodates the rapid consumption element of fast fashion with a business model that promotes sustainability through a buy-back method to upcycle and retain our materials.

ContributorsYang, Andrea (Co-author) / Suresh Kumar, Roshni (Co-author) / Liao, Yuxin (Co-author) / Byrne, Jared (Thesis director) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Department of English (Contributor) / School of International Letters and Cultures (Contributor) / School of Social Transformation (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148209-Thumbnail Image.png
Description

In 2018, the United States generated 37.4 million more U.S. tons of paper and cardboard material compared to in 1960 (EPA, 2020). As the United States produces a disproportionate amount of packaging waste every year when accounting for population size, it has become increasingly difficult to mitigate waste production, lessen

In 2018, the United States generated 37.4 million more U.S. tons of paper and cardboard material compared to in 1960 (EPA, 2020). As the United States produces a disproportionate amount of packaging waste every year when accounting for population size, it has become increasingly difficult to mitigate waste production, lessen the environmental impact of generating more paperboard materials, and move towards a more ethical circular economy. In efforts to adopt the principles of a green economy, deviate from the linear supply chain model, minimize packaging waste, and encourage more sustainable lifestyles, we developed a business centered around a circular, service based model called Room & Cardboard. Our initiative collects cardboard waste generated in and around the ASU community and repurposes it for dorm-style furniture available for students to rent throughout the school year. Using cardboard, we have built prototypes for two products (desk lamps and shoe racks) that are sturdy, visually pleasing, and recyclable. Our initiative helps to reduce cardboard packaging waste by upcycling cardboard waste into products that will increase the lifespan of the cardboard material. At the end of the product’s life span, in cases of severe damage, we will turn the product into a seed board made with blended cardboard paste that can then be used to plant a succulent we will make available to students to buy as dorm decor. The feedback on our initiative through online surveys and in-person tabling has generated enough traction for Dean Rendell of Barrett, the Honors College at Arizona State University to consider a test-drive of our products in the upcoming Fall semester.

ContributorsWerner, Isabella (Co-author) / Islam, Shauda (Co-author) / Norvell, Macey (Co-author) / Byrne, Jared (Thesis director) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05