Matching Items (19)
Filtering by

Clear all filters

131529-Thumbnail Image.png
Description
RecyclePlus is an iOS mobile application that allows users to be knowledgeable in the realms of sustainability. It gives encourages users to be environmental responsible by providing them access to recycling information. In particular, it allows users to search up certain materials and learn about its recyclability and how to

RecyclePlus is an iOS mobile application that allows users to be knowledgeable in the realms of sustainability. It gives encourages users to be environmental responsible by providing them access to recycling information. In particular, it allows users to search up certain materials and learn about its recyclability and how to properly dispose of the material. Some searches will show locations of facilities near users that collect certain materials and dispose of the materials properly. This is a full stack software project that explores open source software and APIs, UI/UX design, and iOS development.
ContributorsTran, Nikki (Author) / Ganesh, Tirupalavanam (Thesis director) / Meuth, Ryan (Committee member) / Watts College of Public Service & Community Solut (Contributor) / Department of Information Systems (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
136526-Thumbnail Image.png
Description
The purpose of this thesis is to examine the events surrounding the creation of the oboe and its rapid spread throughout Europe during the mid to late seventeenth century. The first section describes similar instruments that existed for thousands of years before the invention of the oboe. The following sections

The purpose of this thesis is to examine the events surrounding the creation of the oboe and its rapid spread throughout Europe during the mid to late seventeenth century. The first section describes similar instruments that existed for thousands of years before the invention of the oboe. The following sections examine reasons and methods for the oboe's invention, as well as possible causes of its migration from its starting place in France to other European countries, as well as many other places around the world. I conclude that the oboe was invented to suit the needs of composers in the court of Louis XIV, and that it was brought to other countries by French performers who left France for many reasons, including to escape from the authority of composer Jean-Baptiste Lully and in some cases to promote French culture in other countries.
ContributorsCook, Mary Katherine (Author) / Schuring, Martin (Thesis director) / Micklich, Albie (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Music (Contributor)
Created2015-05
136406-Thumbnail Image.png
Description
In this paper, I analyze representations of nature in popular film, using the feminist / deconstructionist concept of a dualism to structure my critique. Using Val Plumwood’s analysis of the logical structure of dualism and the 5 ‘features of a dualism’ that she identifies, I critique 5 popular movies –

In this paper, I analyze representations of nature in popular film, using the feminist / deconstructionist concept of a dualism to structure my critique. Using Val Plumwood’s analysis of the logical structure of dualism and the 5 ‘features of a dualism’ that she identifies, I critique 5 popular movies – Star Wars, Lord of the Rings, Brave, Grizzly Man, and Planet Earth – by locating within each of them one of the 5 features and explaining how the movie functions to reinforce the Nature/Culture dualism . By showing how the Nature/Culture dualism shapes and is shaped by popular cinema, I show how “Nature” is a social construct, created as part of this very dualism, and reified through popular culture. I conclude with the introduction of a number of ‘subversive’ pieces of visual art that undermine and actively deconstruct the Nature/Culture dualism and show to the viewer a more honest presentation of the non-human world.
ContributorsBarton, Christopher Joseph (Author) / Broglio, Ron (Thesis director) / Minteer, Ben (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2015-05
136386-Thumbnail Image.png
Description
With the development of technology, there has been a dramatic increase in the number of machine learning programs. These complex programs make conclusions and can predict or perform actions based off of models from previous runs or input information. However, such programs require the storing of a very large amount

With the development of technology, there has been a dramatic increase in the number of machine learning programs. These complex programs make conclusions and can predict or perform actions based off of models from previous runs or input information. However, such programs require the storing of a very large amount of data. Queries allow users to extract only the information that helps for their investigation. The purpose of this thesis was to create a system with two important components, querying and visualization. Metadata was stored in Sedna as XML and time series data was stored in OpenTSDB as JSON. In order to connect the two databases, the time series ID was stored as a metric in the XML metadata. Queries should be simple, flexible, and return all data that fits the query parameters. The query language used was an extension of XQuery FLWOR that added time series parameters. Visualization should be easily understood and be organized in a way to easily find important information and details. Because of the possibility of a large amount of data being returned from a query, a multivariate heat map was used to visualize the time series results. The two programs that the system performed queries on was Energy Plus and Epidemic Simulation Data Management System. By creating such a system, it would be easier for people of the project's fields to find the relationship between metadata that leads to the desired results over time. Over the time of the thesis project, the overall software was completed, however the software must be optimized in order to take the enormous amount of data expected from the system.
ContributorsTse, Adam Yusof (Author) / Candan, Selcuk (Thesis director) / Chen, Xilun (Committee member) / Barrett, The Honors College (Contributor) / School of Music (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
133177-Thumbnail Image.png
Description
From 2007 to 2017, the state of California experienced two major droughts that required significant governmental action to decrease urban water demand. The purpose of this project is to isolate and explore the effects of these policy changes on water use during and after these droughts, and to see how

From 2007 to 2017, the state of California experienced two major droughts that required significant governmental action to decrease urban water demand. The purpose of this project is to isolate and explore the effects of these policy changes on water use during and after these droughts, and to see how these policies interact with hydroclimatic variability. As explanatory variables in multiple linear regression (MLR) models, water use policies were found to be significant at both the zip code and city levels. Policies that specifically target behavioral changes were significant mathematical drivers of water use in city-level models. Policy data was aggregated into a timeline and coded based on categories including user type, whether the policy was voluntary or mandatory, the targeted water use type, and whether the change in question concerns active or passive conservation. The analyzed policies include but are not limited to state drought declarations, regulatory municipal ordinances, and incentive programs for household appliances. Spatial averages of available hydroclimatic data have been computed and validated using inverse distance weighting methods. The data was aggregated at the zip code level to be comparable to the available water use data for use in MLR models. Factors already known to affect water use, such as temperature, precipitation, income, and water stress, were brought into the MLR models as explanatory variables. After controlling for these factors, the timeline policies were brought into the model as coded variables to test their effect on water demand during the years 2000-2017. Clearly identifying which policy traits are effective will inform future policymaking in cities aiming to conserve water. The findings suggest that drought-related policies impact per capita urban water use. The results of the city level MLR models indicate that implementation of mandatory policies that target water use behaviors effectively reduce water use. Temperature, income, unemployment, and the WaSSI were also observed to be mathematical drivers of water use. Interaction effects between policies and the WaSSI were statistically significant at both model scales.
ContributorsHjelmstad, Annika Margaret (Author) / Garcia, Margaret (Thesis director) / Larson, Kelli (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
137196-Thumbnail Image.png
Description
As society's energy crisis continues to become more imminent many industries and niches are seeking a new, sustainable and renewable source of electricity production. Similar to solar, wind and tidal energy, kinetic energy has the potential to generate electricity as an extremely renewable source of energy generation. While stationary bicycles

As society's energy crisis continues to become more imminent many industries and niches are seeking a new, sustainable and renewable source of electricity production. Similar to solar, wind and tidal energy, kinetic energy has the potential to generate electricity as an extremely renewable source of energy generation. While stationary bicycles can generate small amounts of electricity, the idea behind this project was to expand energy generation into the more common weight lifting side of exercising. The method for solving this problem was to find the average amount of power generated per user on a Smith machine and determine how much power was available from an accompanying energy generator. The generator consists of three phases: a copper coil and magnet generator, a full wave bridge rectifying circuit and a rheostat. These three phases working together formed a fully functioning controllable generator. The resulting issue with the kinetic energy generator was that the system was too inefficient to serve as a viable system for electricity generation. The electrical production of the generator only saved about 2 cents per year based on current Arizona electricity rates. In the end it was determined that the project was not a sustainable energy generation system and did not warrant further experimentation.
ContributorsO'Halloran, Ryan James (Author) / Middleton, James (Thesis director) / Hinrichs, Richard (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / The Design School (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
133782-Thumbnail Image.png
Description
As we already know, fresh water is essential to human life as it sustains and replenishes our bodies. Water sustainability is clearly an important issue that need to be addressed in our world of growing demand and shrinking resources. The ASU Future H2O program seeks to make a difference in

As we already know, fresh water is essential to human life as it sustains and replenishes our bodies. Water sustainability is clearly an important issue that need to be addressed in our world of growing demand and shrinking resources. The ASU Future H2O program seeks to make a difference in the development of water sustainability programs by performing experiments that convert urine into reusable water. The goal is to make reusable water processes become inexpensive and easily accessible to local businesses. This promises a significant environmental impact. In order to make the process of development more efficient we can combine engineering technology with scientific experimentation. As an engineering student and an advocate of water sustainability, I have a chance to design the front-end platform that will use IoT to make the experimental process more accessible and effective. In this paper, I will document the entire process involved in the designing process and what I have learned.
ContributorsTran, Phung Thien (Author) / Boscovic, Dragan (Thesis director) / Boyer, Treavor (Committee member) / School of Earth and Space Exploration (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137727-Thumbnail Image.png
Description
Plastics continue to benefit society in innumerable ways, even though recent public focus on plastics has centered mostly on human health and environmental concerns, including their endocrine-disrupting properties and the long-term pollution they represent. The benefits of plastics are particularly apparent in medicine and public health. Plastics are versatile, cost-effective,

Plastics continue to benefit society in innumerable ways, even though recent public focus on plastics has centered mostly on human health and environmental concerns, including their endocrine-disrupting properties and the long-term pollution they represent. The benefits of plastics are particularly apparent in medicine and public health. Plastics are versatile, cost-effective, require less energy to produce than alternative materials like metal or glass, and can be manufactured to have many different properties. Due to these characteristics, polymers are used in diverse health applications like disposable syringes and intravenous bags, sterile packaging for medical instruments as well as in joint replacements, tissue engineering, etc. However, not all current uses of plastics are prudent and sustainable, as illustrated by the widespread, unwanted human exposure to endocrine-disrupting bisphenol A (BPA) and di-(2-ethylhexyl) phthalate (DEHP), problems arising from the large quantities of plastic being disposed of, and depletion of non-renewable petroleum resources as a result of the ever-increasing mass production of plastic consumer articles. Using the health-care sector as example, this review concentrates on the benefits and downsides of plastics and identifies opportunities to change the composition and disposal practices of these invaluable polymers for a more sustainable future consumption. It highlights ongoing efforts to phase out DEHP and BPA in the health-care and food industry and discusses biodegradable options for plastic packaging, opportunities for reducing plastic medical waste, and recycling in medical facilities in the quest to reap a maximum of benefits from polymers without compromising human health or the environment in the process.
ContributorsNorth, Emily Jean (Co-author) / Halden, Rolf (Co-author, Thesis director) / Mikhail, Chester (Committee member) / Hurlbut, Ben (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05
148281-Thumbnail Image.png
Description

With the rise of fast fashion and its now apparent effects on climate change, there is an evident need for change in terms of how we as individuals use our clothing and footwear. Our team has created Ray Fashion Inc., a sustainable footwear company that focuses on implementing the circular

With the rise of fast fashion and its now apparent effects on climate change, there is an evident need for change in terms of how we as individuals use our clothing and footwear. Our team has created Ray Fashion Inc., a sustainable footwear company that focuses on implementing the circular economy to reduce the amount of waste generated in shoe creation. We have designed a sandal that accommodates the rapid consumption element of fast fashion with a business model that promotes sustainability through a buy-back method to upcycle and retain our materials.

ContributorsLiao, Yuxin (Co-author) / Yang, Andrea (Co-author) / Suresh Kumar, Roshni (Co-author) / Byrne, Jared (Thesis director) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Department of Finance (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148209-Thumbnail Image.png
Description

In 2018, the United States generated 37.4 million more U.S. tons of paper and cardboard material compared to in 1960 (EPA, 2020). As the United States produces a disproportionate amount of packaging waste every year when accounting for population size, it has become increasingly difficult to mitigate waste production, lessen

In 2018, the United States generated 37.4 million more U.S. tons of paper and cardboard material compared to in 1960 (EPA, 2020). As the United States produces a disproportionate amount of packaging waste every year when accounting for population size, it has become increasingly difficult to mitigate waste production, lessen the environmental impact of generating more paperboard materials, and move towards a more ethical circular economy. In efforts to adopt the principles of a green economy, deviate from the linear supply chain model, minimize packaging waste, and encourage more sustainable lifestyles, we developed a business centered around a circular, service based model called Room & Cardboard. Our initiative collects cardboard waste generated in and around the ASU community and repurposes it for dorm-style furniture available for students to rent throughout the school year. Using cardboard, we have built prototypes for two products (desk lamps and shoe racks) that are sturdy, visually pleasing, and recyclable. Our initiative helps to reduce cardboard packaging waste by upcycling cardboard waste into products that will increase the lifespan of the cardboard material. At the end of the product’s life span, in cases of severe damage, we will turn the product into a seed board made with blended cardboard paste that can then be used to plant a succulent we will make available to students to buy as dorm decor. The feedback on our initiative through online surveys and in-person tabling has generated enough traction for Dean Rendell of Barrett, the Honors College at Arizona State University to consider a test-drive of our products in the upcoming Fall semester.

ContributorsWerner, Isabella (Co-author) / Islam, Shauda (Co-author) / Norvell, Macey (Co-author) / Byrne, Jared (Thesis director) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05