Matching Items (4)
Filtering by

Clear all filters

157239-Thumbnail Image.png
Description
As urban populations rapidly increase in an era of climate change and multiple social and environmental uncertainties, scientists and governments are cultivating knowledge and solutions for the sustainable growth and maintenance of cities. Although substantial literature focuses on urban water resource management related to both human and ecological sustainability, few

As urban populations rapidly increase in an era of climate change and multiple social and environmental uncertainties, scientists and governments are cultivating knowledge and solutions for the sustainable growth and maintenance of cities. Although substantial literature focuses on urban water resource management related to both human and ecological sustainability, few studies assess the unique role of waterway restorations to bridge anthropocentric and ecological concerns in urban environments. To address this gap, my study addressed if well-established sustainability principles are evoked during the nascent discourse of recently proposed urban waterway developments along over fifty miles of Arizona’s Salt River. In this study, a deductive content analysis is used to illuminate the emergence of sustainability principles, the framing of the redevelopment, and to illuminate macro-environmental discourses. Three sustainability principles dominated the discourse: civility and democratic governance; livelihood sufficiency and opportunity; and social-ecological system integrity. These three principles connected to three macro-discourses: economic rationalism; democratic pragmatism; and ecological modernity. These results hold implications for policy and theory and inform urban development processes for improvements to sustainability. As continued densification, in-fill and rapid urbanization continues in the 21st century, more cities are looking to reconstruct urban riverways. Therefore, the emergent sustainability discourse regarding potential revitalizations along Arizona’s Salt River is a manifestation of how waterways are perceived, valued, and essential to urban environments for anthropocentric and ecological needs.
ContributorsHorvath, Veronica (Author) / White, Dave D (Thesis advisor) / Mirumachi, Naho (Committee member) / Childers, Dan (Committee member) / Chester, Mikhail (Committee member) / Arizona State University (Publisher)
Created2019
147733-Thumbnail Image.png
Description

The threat of global climate change to the world’s water resources has jeopardized access to clean drinking water across the world and continues to devastate biodiversity and natural life globally. South Africa operates as a useful case study to understand and analyze the effectiveness of public policy responses to the

The threat of global climate change to the world’s water resources has jeopardized access to clean drinking water across the world and continues to devastate biodiversity and natural life globally. South Africa operates as a useful case study to understand and analyze the effectiveness of public policy responses to the perils of climate change on issues of water access and ecosystem preservation. After the new South African Constitution was enacted in 1997, protecting water resources and ensuring their equitable distribution across the nation’s population was a paramount goal of the young democratic government. The National Water Act was passed in 1998, nationalizing the country’s water infrastructure and putting in place programs seeking to ensure equitable distributive and environmental outcomes. Thus far, it has failed. Access to South Africa’s water resources is as stratified as access to its economy; its aquatic ecosystems remain in grave danger; and many of the same problems of South Africa’s Apartheid era still plague its efforts to create an equitable water system. Decision-making power continues to be concentrated in the hands of the wealthy, at the expense of historically marginalized groups, whose voices are still not adequately heard. Corporate actors still exert undue influence over legislative policy that favors economic growth over environmental sustainability. The looming threat of climate change is exponentially increasing the chances of disasters like Cape Town’s 2018 feared ‘Day Zero’. The National Water Act’s noble intentions were never actualized, and therefore the people of South Africa remain in serious danger of acute and chronic threats to their water supply.

ContributorsWakefield, Alex (Author) / Childers, Dan (Thesis director) / Larson, Rhett (Committee member) / Department of Economics (Contributor) / Dean, W.P. Carey School of Business (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Plasticizers are plastic additives used to enhance the physical properties of plastic and are ubiquitous in the environment. A class of plasticizer compounds called phthalate esters that are not fully eliminated in wastewater treatment facilities are relevant to the ecological health of downstream ecosystems and urban areas due to their

Plasticizers are plastic additives used to enhance the physical properties of plastic and are ubiquitous in the environment. A class of plasticizer compounds called phthalate esters that are not fully eliminated in wastewater treatment facilities are relevant to the ecological health of downstream ecosystems and urban areas due to their ecotoxicity, tendency for soil accumulation, and the emerging concern about their effects on public health. However, plasticizer concentrations in a constructed wetland environment have rarely been studied in the United States, prompting the need for a method of plasticizer quantification in the Tres Rios Constructed Wetlands which are sustained by the effluent of the 91st Avenue Wastewater Treatment Plant in Phoenix, Arizona. The concentrations of four common plasticizer compounds (dimethyl: DMP, diethyl: DEP, di-n-butyl: DnBP, and bis(2-ethylhexyl): DEHP phthalate) at five sites across the wetland surface water were quantified using solid-phase extraction followed by gas chromatography coupled with mass spectrometry (GC/MS). The sampling period included four sample sets taken from March 2022 to September 2022, which gave temporal data in addition to spatial concentration data. Quantification and quality control were performed using internal standard calibration, replicate samples, and laboratory blanks. Higher molecular weight phthalates accumulated in the wetland surface water at significantly higher average concentrations than those of lower molecular weight at a 95% confidence level, ranging from 8 ng/L to 7349 ng/L and 4 ng/L to 27876 ng/L for DnBP and DEHP, respectively. Concentrations for dimethyl phthalate and diethyl phthalate were typically less than 50 ng/L and were often below the method detection limit. Average concentrations of DnBP and DEHP were significantly higher during periods of high temperatures and arid conditions. The spatial distribution of phthalates was analyzed. Most importantly, a method for successful ultra-trace quantification of plasticizers at Tres Rios was established. These results confirm the presence of plasticizers at Tres Rios and a significant seasonal increase in their surface water concentrations. The developed analytical procedure provides a solid foundation for the Wetlands Environmental Ecology Lab at ASU to further investigate plasticizers and contaminants of emerging concern and determine their ultimate fate through volatilization, sorption, photodegradation, hydrolysis, microbial biodegradation, and phytoremediation studies.

ContributorsStorey, Garrett (Author) / Herckes, Pierre (Thesis director) / Childers, Dan (Committee member) / Borges, Chad (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
154038-Thumbnail Image.png
Description
The complexity and interconnectedness of sustainability issues has led to the joining of disciplines. This effort has been primarily within the sciences with minimal attention given to the relationship between science and art. The exclusion of art is problematic since sustainability challenges are not only scientific and technical; they are

The complexity and interconnectedness of sustainability issues has led to the joining of disciplines. This effort has been primarily within the sciences with minimal attention given to the relationship between science and art. The exclusion of art is problematic since sustainability challenges are not only scientific and technical; they are also cultural, so the arts, as shapers of culture, are critical components that warrant representation. In addition to contributing to the production of culture, arts have also been credited as catalysts for scientific breakthroughs; thus it stands to reason that understanding art-science integration will benefit sustainability’s focus on use-inspired basic research. I focus on placing art and science on equal footing to enhance understanding of how individual artists-scientists and collaborative artist-scientist teams creatively address sustainability challenges. In other words, I address the question “What does it take to develop high functioning artists-scientists or artist-scientist collaborations?”

To answer this question, I used a multipronged approach to triangulate a richer understanding of what art-science synthesis offers sustainability and how it functions. First, I performed an historical analysis of a maladapted wilderness aesthetic and turned to the work Aldo Leopold – an exemplar of an artist-scientist – for a new sustainability aesthetic. Then, I engaged in an individual contemporary art practice, culminating in a gallery exhibit, which displayed ecologically-informed work from a three year study of my backyard. Finally, I conducted small group research of artist-scientist teams tasked with developing interpretive signage for the Tres Rios wetland site. For this final element, I collected survey, wearable sensor, and ethnographic data.

Through this composite research, I found that successful art-science practices require significant energy and time investment. Although art-science is most intensive in an individual practice where the person must become “fluent” in two disciplines, it is still challenging in a group setting where members must become “conversational” in each other’s work. However, successful art-science syntheses appear to result in improved communication skills, better problem articulation, more creative problem solving, and the questioning of personal and disciplinary mental models. Thus, the outcomes of such syntheses warrant the effort required at both the individual and collaborative level.
ContributorsCardenas, Edgar (Author) / Klett, Mark (Thesis advisor) / Minteer, Ben A (Thesis advisor) / Hackett, Edward J (Committee member) / Childers, Dan (Committee member) / Arizona State University (Publisher)
Created2015